/* This code can be loaded, or copied and paste using cpaste, into Sage. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. */ P. = PolynomialRing(QQ) g = P([-1, -6, -1, 1]) F. = NumberField(g) ZF = F.ring_of_integers() NN = ZF.ideal([27, 3, 3]) primes_array = [ [3, 3, w + 1],\ [7, 7, w - 1],\ [8, 2, 2],\ [9, 3, -w^2 + 2*w + 4],\ [11, 11, -w^2 + 2*w + 2],\ [13, 13, -w^2 + w + 4],\ [19, 19, w + 3],\ [19, 19, -w^2 + 2*w + 5],\ [19, 19, -w^2 + 3*w + 2],\ [23, 23, w^2 - w - 3],\ [23, 23, -w^2 + 2],\ [23, 23, -w + 4],\ [31, 31, w^2 - 5],\ [43, 43, w^2 - 3*w - 3],\ [49, 7, w^2 - 6],\ [53, 53, 2*w - 5],\ [61, 61, 2*w^2 - 2*w - 9],\ [71, 71, 2*w - 3],\ [73, 73, 2*w^2 - 5*w - 5],\ [83, 83, w^2 - w - 9],\ [97, 97, 2*w^2 - 3*w - 7],\ [103, 103, w^2 - 3*w - 6],\ [109, 109, w^2 - 4*w - 3],\ [121, 11, 2*w^2 - w - 7],\ [125, 5, -5],\ [127, 127, w^2 + w - 5],\ [131, 131, w^2 - 11],\ [137, 137, 3*w^2 - 7*w - 8],\ [137, 137, 2*w^2 - 5*w - 6],\ [137, 137, -w^2 + w - 2],\ [139, 139, 3*w^2 - 2*w - 16],\ [139, 139, 3*w - 2],\ [139, 139, -w^2 + 3*w - 3],\ [151, 151, w^2 + w - 11],\ [157, 157, 2*w^2 - 3*w - 3],\ [163, 163, w^2 - w - 10],\ [169, 13, 2*w^2 - 3*w - 4],\ [173, 173, -3*w^2 + 6*w + 8],\ [191, 191, -4*w^2 + 7*w + 15],\ [193, 193, 2*w^2 - 3],\ [197, 197, w^2 - 3*w - 11],\ [199, 199, 3*w^2 - 5*w - 16],\ [211, 211, w^2 - 4*w - 9],\ [223, 223, 2*w^2 - w - 4],\ [227, 227, 3*w - 4],\ [229, 229, w^2 + w - 8],\ [241, 241, w^2 - 4*w - 6],\ [251, 251, w - 7],\ [257, 257, w^2 - 4*w - 7],\ [263, 263, 3*w^2 - 5*w - 10],\ [263, 263, 2*w^2 - 5*w - 15],\ [263, 263, -w^2 + 6*w - 1],\ [269, 269, -w^2 - w + 14],\ [277, 277, 2*w^2 - 5*w - 8],\ [277, 277, w^2 + 3*w - 3],\ [277, 277, 3*w^2 - 4*w - 12],\ [281, 281, -2*w - 7],\ [293, 293, 3*w^2 - 2*w - 12],\ [307, 307, 2*w^2 + w - 8],\ [313, 313, w^2 + 4*w - 2],\ [317, 317, 3*w^2 - 6*w - 5],\ [331, 331, 4*w^2 - 4*w - 19],\ [337, 337, -5*w^2 + 8*w + 21],\ [347, 347, 3*w^2 - 6*w - 13],\ [347, 347, 3*w^2 - 5*w - 22],\ [347, 347, 3*w^2 - 5*w - 9],\ [349, 349, w^2 - 5*w - 11],\ [353, 353, -w^2 + 6*w - 7],\ [359, 359, -4*w^2 + 8*w + 11],\ [367, 367, 3*w^2 - 4*w - 11],\ [373, 373, w^2 + 2*w - 6],\ [379, 379, 5*w^2 - 9*w - 18],\ [409, 409, -w^2 - 4],\ [439, 439, 3*w^2 - 6*w - 14],\ [443, 443, -w^2 - 2*w + 13],\ [443, 443, 2*w^2 - 15],\ [443, 443, 3*w^2 - 13],\ [449, 449, w^2 + 2*w - 7],\ [449, 449, 2*w^2 - 6*w - 7],\ [449, 449, 3*w^2 - 3*w - 11],\ [461, 461, -w^2 - 2*w - 5],\ [467, 467, 3*w^2 - 5*w - 7],\ [479, 479, -w^2 + 6*w - 4],\ [491, 491, 3*w^2 - 5*w - 6],\ [499, 499, w^2 - 5*w - 8],\ [509, 509, 3*w^2 - 6*w - 19],\ [521, 521, 3*w^2 - 2*w - 10],\ [523, 523, 4*w - 9],\ [541, 541, 3*w^2 - 3*w - 10],\ [547, 547, 2*w^2 + w - 20],\ [547, 547, w^2 - 6*w - 5],\ [547, 547, 6*w^2 - 11*w - 24],\ [557, 557, -5*w^2 + 11*w + 11],\ [563, 563, 3*w^2 - 6*w - 16],\ [569, 569, 4*w^2 - 5*w - 17],\ [587, 587, 5*w^2 - 8*w - 20],\ [593, 593, 5*w - 3],\ [593, 593, 3*w^2 - w - 17],\ [593, 593, w - 9],\ [613, 613, 2*w^2 - w - 19],\ [613, 613, 3*w^2 - 4*w - 5],\ [613, 613, 3*w^2 - w - 8],\ [617, 617, 3*w^2 - 2*w - 9],\ [617, 617, -w^2 + w - 5],\ [617, 617, 4*w^2 - 6*w - 15],\ [619, 619, -w^2 + 3*w - 6],\ [631, 631, 4*w^2 - 7*w - 21],\ [641, 641, -w^2 - 3*w + 20],\ [643, 643, 3*w^2 - 14],\ [643, 643, w^2 - w - 13],\ [643, 643, 2*w^2 - 9*w + 2],\ [647, 647, 2*w^2 - 6*w - 9],\ [653, 653, 3*w^2 - 5],\ [659, 659, 6*w^2 - 11*w - 21],\ [661, 661, w^2 - 6*w - 6],\ [661, 661, w^2 + 3*w - 6],\ [661, 661, 5*w^2 - 7*w - 22],\ [673, 673, w^2 - 6*w - 12],\ [677, 677, 4*w^2 - 7*w - 22],\ [677, 677, 3*w^2 - 7*w - 12],\ [677, 677, -2*w^2 - 3],\ [683, 683, -2*w - 9],\ [683, 683, 4*w^2 - 7*w - 12],\ [683, 683, 3*w^2 - 3*w - 8],\ [691, 691, 2*w^2 + w - 11],\ [701, 701, 3*w^2 - 3*w - 5],\ [709, 709, -w^2 - 2*w - 6],\ [727, 727, 3*w^2 - w - 6],\ [727, 727, 3*w^2 - w - 27],\ [727, 727, 3*w^2 - w - 5],\ [733, 733, -2*w^2 + 9*w - 5],\ [739, 739, 3*w^2 - 4*w - 23],\ [743, 743, 2*w^2 - 7*w - 7],\ [743, 743, 3*w^2 - w - 20],\ [743, 743, 3*w^2 - 2*w - 7],\ [757, 757, -w - 9],\ [757, 757, 4*w^2 - 2*w - 29],\ [757, 757, 2*w^2 - 3*w - 18],\ [761, 761, 3*w^2 - 2*w - 6],\ [761, 761, 3*w^2 - 2*w - 25],\ [773, 773, -5*w - 12],\ [787, 787, -3*w - 10],\ [809, 809, 4*w^2 - w - 19],\ [821, 821, 5*w^2 - 10*w - 19],\ [823, 823, -4*w - 11],\ [827, 827, -7*w - 5],\ [827, 827, 2*w^2 - 6*w - 13],\ [827, 827, -w^2 - 2*w + 18],\ [839, 839, 6*w^2 - 9*w - 26],\ [839, 839, 5*w^2 - 12*w - 13],\ [839, 839, w - 10],\ [857, 857, -w^2 + 4*w - 8],\ [859, 859, 3*w^2 - 8*w - 10],\ [859, 859, 4*w^2 - 9*w - 14],\ [859, 859, 3*w^2 - 26],\ [863, 863, 2*w^2 + 3*w - 7],\ [877, 877, -5*w^2 + 11*w + 9],\ [877, 877, -5*w^2 + 10*w + 13],\ [877, 877, -w^2 + w - 6],\ [881, 881, w^2 - 3*w - 14],\ [883, 883, -w^2 + 3*w - 7],\ [887, 887, -3*w^2 + 6*w - 2],\ [907, 907, w^2 + 3*w - 8],\ [911, 911, 4*w^2 - 6*w - 29],\ [937, 937, -6*w^2 + 11*w + 25],\ [953, 953, 6*w^2 - 6*w - 29],\ [961, 31, -w^2 + 7*w - 5],\ [967, 967, 2*w^2 + w - 14],\ [971, 971, 5*w^2 - 3*w - 27],\ [971, 971, 4*w - 15],\ [971, 971, w^2 - 2*w - 14],\ [977, 977, 3*w^2 - 5*w - 24],\ [983, 983, w^2 - 4*w - 15],\ [991, 991, 6*w^2 - 10*w - 23],\ [991, 991, 5*w^2 - 6*w - 22],\ [991, 991, 3*w^2 + w - 13]] primes = [ZF.ideal(I) for I in primes_array] heckePol = x K = QQ e = 1 hecke_eigenvalues_array = [-1, -2, -3, -1, 0, -4, -2, -4, 4, 6, 6, 0, -4, 2, 4, 0, 14, 0, 10, 0, -10, 14, -2, -2, -6, 4, -18, 12, 6, -18, -8, -8, -4, -14, -14, 16, -16, -18, -12, -2, 24, -16, -8, -20, -24, -14, -26, -12, 18, -24, -12, 24, 18, 10, 16, 26, -6, 30, 20, -8, 6, -28, 8, 0, 24, 6, -28, -18, -24, 4, -10, -20, 10, 14, -12, -30, -6, -18, 30, 6, -6, 12, 0, -6, 14, 6, -18, -28, 34, -4, 4, -8, -24, 12, -6, 36, 18, -36, -36, 26, -26, -2, -6, 12, 6, -40, -20, -36, -2, 4, 20, -36, -18, -18, 20, -14, -38, 26, 18, 6, -42, -18, 12, 12, 20, -30, 28, 26, 4, -32, -22, -40, 24, -12, -48, -38, 28, 26, 12, -30, -18, 20, -42, 30, 32, 30, 36, -6, 24, -48, 0, 18, 14, 28, 10, -12, -22, -14, 22, 0, 52, 24, 20, -30, 32, -6, 26, -40, -42, 36, 12, 42, -18, -8, 26, -2] hecke_eigenvalues = {} for i in range(len(hecke_eigenvalues_array)): hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i] AL_eigenvalues = {} AL_eigenvalues[ZF.ideal([3, 3, w + 1])] = 1 AL_eigenvalues[ZF.ideal([9, 3, -w^2 + 2*w + 4])] = 1 # EXAMPLE: # pp = ZF.ideal(2).factor()[0][0] # hecke_eigenvalues[pp]