# Properties

 Base field 3.3.761.1 Weight [2, 2, 2] Level norm 24 Level $[24, 6, 2w + 2]$ Label 3.3.761.1-24.1-d Dimension 2 CM no Base change no

# Related objects

• L-function not available

## Base field 3.3.761.1

Generator $$w$$, with minimal polynomial $$x^{3} - x^{2} - 6x - 1$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2, 2] Level $[24, 6, 2w + 2]$ Label 3.3.761.1-24.1-d Dimension 2 Is CM no Is base change no Parent newspace dimension 8

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2} + 3x - 1$$
Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $\phantom{-}1$
7 $[7, 7, w - 1]$ $\phantom{-}e$
8 $[8, 2, 2]$ $\phantom{-}1$
9 $[9, 3, -w^{2} + 2w + 4]$ $-2e - 3$
11 $[11, 11, -w^{2} + 2w + 2]$ $\phantom{-}2e + 1$
13 $[13, 13, -w^{2} + w + 4]$ $\phantom{-}e - 3$
19 $[19, 19, w + 3]$ $-2e - 3$
19 $[19, 19, -w^{2} + 2w + 5]$ $-e + 2$
19 $[19, 19, -w^{2} + 3w + 2]$ $-e - 6$
23 $[23, 23, w^{2} - w - 3]$ $\phantom{-}e - 4$
23 $[23, 23, -w^{2} + 2]$ $-2e - 1$
23 $[23, 23, -w + 4]$ $-3$
31 $[31, 31, w^{2} - 5]$ $\phantom{-}e - 2$
43 $[43, 43, w^{2} - 3w - 3]$ $\phantom{-}4e + 3$
49 $[49, 7, w^{2} - 6]$ $-3e - 8$
53 $[53, 53, 2w - 5]$ $-2e + 5$
61 $[61, 61, 2w^{2} - 2w - 9]$ $-8$
71 $[71, 71, 2w - 3]$ $-3$
73 $[73, 73, 2w^{2} - 5w - 5]$ $-4$
83 $[83, 83, w^{2} - w - 9]$ $\phantom{-}4e + 11$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $-1$
8 $[8, 2, 2]$ $-1$