# Properties

 Base field 3.3.761.1 Weight [2, 2, 2] Level norm 23 Level $[23, 23, -w + 4]$ Label 3.3.761.1-23.3-b Dimension 18 CM no Base change no

# Related objects

• L-function not available

## Base field 3.3.761.1

Generator $$w$$, with minimal polynomial $$x^{3} - x^{2} - 6x - 1$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2, 2] Level $[23, 23, -w + 4]$ Label 3.3.761.1-23.3-b Dimension 18 Is CM no Is base change no Parent newspace dimension 22

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{18} - 44x^{16} + 791x^{14} - 7461x^{12} + 39425x^{10} - 115322x^{8} + 173000x^{6} - 116288x^{4} + 34960x^{2} - 3872$$
Norm Prime Eigenvalue
3 $[3, 3, w + 1]$ $\phantom{-}e$
7 $[7, 7, w - 1]$ $\phantom{-}\frac{2371}{10016}e^{16} - \frac{51701}{5008}e^{14} + \frac{1835185}{10016}e^{12} - \frac{16974321}{10016}e^{10} + \frac{86851437}{10016}e^{8} - \frac{7484880}{313}e^{6} + \frac{19790787}{626}e^{4} - \frac{9503825}{626}e^{2} + \frac{1468311}{626}$
8 $[8, 2, 2]$ $-\frac{2815}{5008}e^{16} + \frac{122813}{5008}e^{14} - \frac{2181025}{5008}e^{12} + \frac{10096347}{2504}e^{10} - \frac{6467786}{313}e^{8} + \frac{286215695}{5008}e^{6} - \frac{190370381}{2504}e^{4} + \frac{46500655}{1252}e^{2} - \frac{3671079}{626}$
9 $[9, 3, -w^{2} + 2w + 4]$ $-\frac{61761}{220352}e^{17} + \frac{122487}{10016}e^{15} - \frac{47860971}{220352}e^{13} + \frac{443207071}{220352}e^{11} - \frac{2272267499}{220352}e^{9} + \frac{1572412855}{55088}e^{7} - \frac{1047800835}{27544}e^{5} + \frac{64314660}{3443}e^{3} - \frac{40827979}{13772}e$
11 $[11, 11, -w^{2} + 2w + 2]$ $\phantom{-}\frac{55205}{55088}e^{17} - \frac{437923}{10016}e^{15} + \frac{42775781}{55088}e^{13} - \frac{792127653}{110176}e^{11} + \frac{4060123983}{110176}e^{9} - \frac{11232865297}{110176}e^{7} + \frac{7476885987}{55088}e^{5} - \frac{1830332611}{27544}e^{3} + \frac{144948307}{13772}e$
13 $[13, 13, -w^{2} + w + 4]$ $-\frac{4777}{110176}e^{17} + \frac{18913}{10016}e^{15} - \frac{3685459}{110176}e^{13} + \frac{16998189}{55088}e^{11} - \frac{43303269}{27544}e^{9} + \frac{474113381}{110176}e^{7} - \frac{308367201}{55088}e^{5} + \frac{70595863}{27544}e^{3} - \frac{5051143}{13772}e$
19 $[19, 19, w + 3]$ $-\frac{17017}{20032}e^{16} + \frac{371219}{10016}e^{14} - \frac{13185115}{20032}e^{12} + \frac{122073611}{20032}e^{10} - \frac{625616327}{20032}e^{8} + \frac{108149519}{1252}e^{6} - \frac{287782913}{2504}e^{4} + \frac{70340639}{1252}e^{2} - \frac{11116039}{1252}$
19 $[19, 19, -w^{2} + 2w + 5]$ $-\frac{8951}{27544}e^{17} + \frac{17735}{1252}e^{15} - \frac{6919883}{27544}e^{13} + \frac{63935621}{27544}e^{11} - \frac{326546283}{27544}e^{9} + \frac{448749799}{13772}e^{7} - \frac{588817175}{13772}e^{5} + \frac{138334969}{6886}e^{3} - \frac{10371341}{3443}e$
19 $[19, 19, -w^{2} + 3w + 2]$ $-\frac{411681}{220352}e^{17} + \frac{816431}{10016}e^{15} - \frac{318987179}{220352}e^{13} + \frac{2953411919}{220352}e^{11} - \frac{15136747643}{220352}e^{9} + \frac{10467582155}{55088}e^{7} - \frac{6964465623}{27544}e^{5} + \frac{851327765}{6886}e^{3} - \frac{269139539}{13772}e$
23 $[23, 23, w^{2} - w - 3]$ $\phantom{-}\frac{48649}{110176}e^{17} - \frac{192949}{10016}e^{15} + \frac{37690591}{110176}e^{13} - \frac{174460291}{55088}e^{11} + \frac{446964121}{27544}e^{9} - \frac{4943213877}{110176}e^{7} + \frac{3285682647}{55088}e^{5} - \frac{801298051}{27544}e^{3} + \frac{63264805}{13772}e$
23 $[23, 23, -w^{2} + 2]$ $\phantom{-}\frac{81207}{220352}e^{17} - \frac{160965}{10016}e^{15} + \frac{62845965}{220352}e^{13} - \frac{581256977}{220352}e^{11} + \frac{2973906149}{220352}e^{9} - \frac{2050073171}{55088}e^{7} + \frac{1354640557}{27544}e^{5} - \frac{81214550}{3443}e^{3} + \frac{50148221}{13772}e$
23 $[23, 23, -w + 4]$ $\phantom{-}1$
31 $[31, 31, w^{2} - 5]$ $-\frac{19715}{20032}e^{16} + \frac{430179}{10016}e^{14} - \frac{15284185}{20032}e^{12} + \frac{141572341}{20032}e^{10} - \frac{726061185}{20032}e^{8} + \frac{502677709}{5008}e^{6} - \frac{41908178}{313}e^{4} + \frac{20625972}{313}e^{2} - \frac{13141207}{1252}$
43 $[43, 43, w^{2} - 3w - 3]$ $\phantom{-}\frac{688207}{220352}e^{17} - \frac{1365035}{10016}e^{15} + \frac{533445349}{220352}e^{13} - \frac{4940573845}{220352}e^{11} + \frac{25334018097}{220352}e^{9} - \frac{4383761361}{13772}e^{7} + \frac{2922217047}{6886}e^{5} - \frac{2872421323}{13772}e^{3} + \frac{456866299}{13772}e$
49 $[49, 7, w^{2} - 6]$ $\phantom{-}\frac{38941}{20032}e^{16} - \frac{849543}{10016}e^{14} + \frac{30177911}{20032}e^{12} - \frac{279453831}{20032}e^{10} + \frac{1432649411}{20032}e^{8} - \frac{247812369}{1252}e^{6} + \frac{660276579}{2504}e^{4} - \frac{161932127}{1252}e^{2} + \frac{25694983}{1252}$
53 $[53, 53, 2w - 5]$ $\phantom{-}\frac{8773}{10016}e^{16} - \frac{191371}{5008}e^{14} + \frac{6796767}{10016}e^{12} - \frac{62921671}{10016}e^{10} + \frac{322421795}{10016}e^{8} - \frac{111444799}{1252}e^{6} + \frac{148189235}{1252}e^{4} - \frac{36155861}{626}e^{2} + \frac{5705115}{626}$
61 $[61, 61, 2w^{2} - 2w - 9]$ $-\frac{289073}{220352}e^{17} + \frac{573309}{10016}e^{15} - \frac{224012411}{220352}e^{13} + \frac{2074274555}{220352}e^{11} - \frac{10632786399}{220352}e^{9} + \frac{459706581}{3443}e^{7} - \frac{1224359597}{6886}e^{5} + \frac{1200041281}{13772}e^{3} - \frac{190381505}{13772}e$
71 $[71, 71, 2w - 3]$ $-\frac{42235}{20032}e^{16} + \frac{921431}{10016}e^{14} - \frac{32732385}{20032}e^{12} + \frac{303113893}{20032}e^{10} - \frac{1553937793}{20032}e^{8} + \frac{1075109099}{5008}e^{6} - \frac{358003093}{1252}e^{4} + \frac{87753851}{626}e^{2} - \frac{27838043}{1252}$
73 $[73, 73, 2w^{2} - 5w - 5]$ $\phantom{-}\frac{307267}{220352}e^{17} - \frac{609283}{10016}e^{15} + \frac{238007073}{220352}e^{13} - \frac{2202983289}{220352}e^{11} + \frac{11285064949}{220352}e^{9} - \frac{3898434913}{27544}e^{7} + \frac{2588615577}{13772}e^{5} - \frac{1258734113}{13772}e^{3} + \frac{197558323}{13772}e$
83 $[83, 83, w^{2} - w - 9]$ $\phantom{-}\frac{9499}{5008}e^{16} - \frac{103613}{1252}e^{14} + \frac{7360621}{5008}e^{12} - \frac{68149407}{5008}e^{10} + \frac{349253899}{5008}e^{8} - \frac{482943403}{2504}e^{6} + \frac{80284897}{313}e^{4} - \frac{78377717}{626}e^{2} + \frac{6181447}{313}$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
23 $[23, 23, -w + 4]$ $-1$