# Properties

 Base field $$\Q(\zeta_{7})^+$$ Weight [2, 2, 2] Level norm 181 Level $[181,181,-5w^{2} + 4w + 5]$ Label 3.3.49.1-181.2-a Dimension 1 CM no Base change no

# Related objects

## Base field $$\Q(\zeta_{7})^+$$

Generator $$w$$, with minimal polynomial $$x^{3} - x^{2} - 2x + 1$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2, 2] Level $[181,181,-5w^{2} + 4w + 5]$ Label 3.3.49.1-181.2-a Dimension 1 Is CM no Is base change no Parent newspace dimension 2

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
7 $[7, 7, 2w^{2} - w - 3]$ $\phantom{-}3$
8 $[8, 2, 2]$ $-1$
13 $[13, 13, -w^{2} - w + 3]$ $-6$
13 $[13, 13, -w^{2} + 2w + 2]$ $\phantom{-}4$
13 $[13, 13, -2w^{2} + w + 2]$ $-1$
27 $[27, 3, 3]$ $-2$
29 $[29, 29, 3w^{2} - 2w - 4]$ $\phantom{-}0$
29 $[29, 29, 2w^{2} + w - 4]$ $\phantom{-}0$
29 $[29, 29, -w^{2} + 3w + 1]$ $-5$
41 $[41, 41, w^{2} - w - 5]$ $-8$
41 $[41, 41, 2w^{2} - 3w - 4]$ $\phantom{-}2$
41 $[41, 41, -3w^{2} + w + 3]$ $\phantom{-}2$
43 $[43, 43, w^{2} + 2w - 5]$ $-6$
43 $[43, 43, 2w^{2} + w - 5]$ $-1$
43 $[43, 43, 3w^{2} - 2w - 3]$ $\phantom{-}4$
71 $[71, 71, 4w^{2} - 3w - 5]$ $\phantom{-}12$
71 $[71, 71, 3w^{2} - 4w - 5]$ $-3$
71 $[71, 71, -4w^{2} + w + 5]$ $\phantom{-}12$
83 $[83, 83, w^{2} + w - 7]$ $-6$
83 $[83, 83, w^{2} - 2w - 6]$ $\phantom{-}4$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
181 $[181,181,-5w^{2} + 4w + 5]$ $-1$