Properties

Base field \(\Q(\zeta_{7})^+\)
Weight [2, 2, 2]
Level norm 139
Level $[139,139,-w^{2} + 5w + 1]$
Label 3.3.49.1-139.3-a
Dimension 2
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\zeta_{7})^+\)

Generator \(w\), with minimal polynomial \(x^{3} - x^{2} - 2x + 1\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2]
Level $[139,139,-w^{2} + 5w + 1]$
Label 3.3.49.1-139.3-a
Dimension 2
Is CM no
Is base change no
Parent newspace dimension 2

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} + 2x - 11\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
7 $[7, 7, 2w^{2} - w - 3]$ $\phantom{-}e$
8 $[8, 2, 2]$ $-\frac{1}{2}e + \frac{3}{2}$
13 $[13, 13, -w^{2} - w + 3]$ $\phantom{-}\frac{1}{2}e - \frac{3}{2}$
13 $[13, 13, -w^{2} + 2w + 2]$ $-e - 1$
13 $[13, 13, -2w^{2} + w + 2]$ $-e - 1$
27 $[27, 3, 3]$ $\phantom{-}e - 3$
29 $[29, 29, 3w^{2} - 2w - 4]$ $-2e$
29 $[29, 29, 2w^{2} + w - 4]$ $-\frac{1}{2}e - \frac{1}{2}$
29 $[29, 29, -w^{2} + 3w + 1]$ $\phantom{-}e - 1$
41 $[41, 41, w^{2} - w - 5]$ $\phantom{-}\frac{3}{2}e - \frac{9}{2}$
41 $[41, 41, 2w^{2} - 3w - 4]$ $-e + 4$
41 $[41, 41, -3w^{2} + w + 3]$ $-4$
43 $[43, 43, w^{2} + 2w - 5]$ $\phantom{-}\frac{3}{2}e - \frac{5}{2}$
43 $[43, 43, 2w^{2} + w - 5]$ $-2$
43 $[43, 43, 3w^{2} - 2w - 3]$ $\phantom{-}2e + 5$
71 $[71, 71, 4w^{2} - 3w - 5]$ $-e + 11$
71 $[71, 71, 3w^{2} - 4w - 5]$ $\phantom{-}e - 5$
71 $[71, 71, -4w^{2} + w + 5]$ $-2e - 4$
83 $[83, 83, w^{2} + w - 7]$ $-\frac{3}{2}e - \frac{15}{2}$
83 $[83, 83, w^{2} - 2w - 6]$ $-8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
139 $[139,139,-w^{2} + 5w + 1]$ $-1$