Properties

 Label 3.3.49.1-139.2-a Base field $$\Q(\zeta_{7})^+$$ Weight $[2, 2, 2]$ Level norm $139$ Level $[139,139,-4w^{2} - w + 8]$ Dimension $2$ CM no Base change no

Related objects

• L-function not available

Base field $$\Q(\zeta_{7})^+$$

Generator $$w$$, with minimal polynomial $$x^{3} - x^{2} - 2x + 1$$; narrow class number $$1$$ and class number $$1$$.

Form

 Weight: $[2, 2, 2]$ Level: $[139,139,-4w^{2} - w + 8]$ Dimension: $2$ CM: no Base change: no Newspace dimension: $2$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} + 2x - 11$$
Norm Prime Eigenvalue
7 $[7, 7, 2w^{2} - w - 3]$ $\phantom{-}e$
8 $[8, 2, 2]$ $-\frac{1}{2}e + \frac{3}{2}$
13 $[13, 13, -w^{2} - w + 3]$ $-e - 1$
13 $[13, 13, -w^{2} + 2w + 2]$ $-e - 1$
13 $[13, 13, -2w^{2} + w + 2]$ $\phantom{-}\frac{1}{2}e - \frac{3}{2}$
27 $[27, 3, 3]$ $\phantom{-}e - 3$
29 $[29, 29, 3w^{2} - 2w - 4]$ $-\frac{1}{2}e - \frac{1}{2}$
29 $[29, 29, 2w^{2} + w - 4]$ $\phantom{-}e - 1$
29 $[29, 29, -w^{2} + 3w + 1]$ $-2e$
41 $[41, 41, w^{2} - w - 5]$ $-e + 4$
41 $[41, 41, 2w^{2} - 3w - 4]$ $-4$
41 $[41, 41, -3w^{2} + w + 3]$ $\phantom{-}\frac{3}{2}e - \frac{9}{2}$
43 $[43, 43, w^{2} + 2w - 5]$ $\phantom{-}2e + 5$
43 $[43, 43, 2w^{2} + w - 5]$ $\phantom{-}\frac{3}{2}e - \frac{5}{2}$
43 $[43, 43, 3w^{2} - 2w - 3]$ $-2$
71 $[71, 71, 4w^{2} - 3w - 5]$ $\phantom{-}e - 5$
71 $[71, 71, 3w^{2} - 4w - 5]$ $-2e - 4$
71 $[71, 71, -4w^{2} + w + 5]$ $-e + 11$
83 $[83, 83, w^{2} + w - 7]$ $-8$
83 $[83, 83, w^{2} - 2w - 6]$ $\phantom{-}4e + 6$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$139$ $[139,139,-4w^{2} - w + 8]$ $-1$