# Properties

 Label 3.3.316.1-27.1-a Base field 3.3.316.1 Weight $[2, 2, 2]$ Level norm $27$ Level $[27, 3, 3]$ Dimension $2$ CM no Base change no

# Related objects

• L-function not available

## Base field 3.3.316.1

Generator $$w$$, with minimal polynomial $$x^{3} - x^{2} - 4x + 2$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight: $[2, 2, 2]$ Level: $[27, 3, 3]$ Dimension: $2$ CM: no Base change: no Newspace dimension: $10$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:

 $$x^{2} + 3x + 1$$
Norm Prime Eigenvalue
2 $[2, 2, -w]$ $\phantom{-}e$
2 $[2, 2, w - 1]$ $\phantom{-}e + 1$
11 $[11, 11, w^{2} - w - 1]$ $\phantom{-}e$
17 $[17, 17, -w^{2} - w + 3]$ $-2e - 5$
19 $[19, 19, w^{2} - w + 1]$ $-3e - 1$
23 $[23, 23, 2w - 3]$ $-2e - 9$
27 $[27, 3, 3]$ $-1$
29 $[29, 29, 2w + 1]$ $\phantom{-}3e + 3$
31 $[31, 31, 2w^{2} - 2w - 9]$ $\phantom{-}2e + 1$
37 $[37, 37, 2w^{2} - 2w - 5]$ $-6$
41 $[41, 41, 2w^{2} - 9]$ $-e - 9$
43 $[43, 43, w^{2} + w - 5]$ $-5$
43 $[43, 43, -3w^{2} + w + 15]$ $\phantom{-}9e + 12$
43 $[43, 43, -2w^{2} + 2w + 11]$ $-2e + 1$
53 $[53, 53, w^{2} - w - 7]$ $\phantom{-}2e + 8$
61 $[61, 61, 4w^{2} - 2w - 15]$ $\phantom{-}3e + 3$
67 $[67, 67, -5w^{2} + 3w + 23]$ $-9e - 17$
73 $[73, 73, 2w^{2} - 3]$ $-8e - 11$
73 $[73, 73, -3w^{2} - w + 7]$ $-6e - 16$
73 $[73, 73, -6w^{2} + 4w + 25]$ $-5e - 8$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$27$ $[27, 3, 3]$ $1$