/* This code can be loaded, or copied and paste using cpaste, into Sage. It will load the data associated to the HMF, including the field, level, and Hecke and Atkin-Lehner eigenvalue data. */ P. = PolynomialRing(QQ) g = P([2, -4, -1, 1]) F. = NumberField(g) ZF = F.ring_of_integers() NN = ZF.ideal([19, 19, w^2 - w + 1]) primes_array = [ [2, 2, -w],\ [2, 2, w - 1],\ [11, 11, w^2 - w - 1],\ [17, 17, -w^2 - w + 3],\ [19, 19, w^2 - w + 1],\ [23, 23, 2*w - 3],\ [27, 3, 3],\ [29, 29, 2*w + 1],\ [31, 31, 2*w^2 - 2*w - 9],\ [37, 37, 2*w^2 - 2*w - 5],\ [41, 41, 2*w^2 - 9],\ [43, 43, w^2 + w - 5],\ [43, 43, -3*w^2 + w + 15],\ [43, 43, -2*w^2 + 2*w + 11],\ [53, 53, w^2 - w - 7],\ [61, 61, 4*w^2 - 2*w - 15],\ [67, 67, -5*w^2 + 3*w + 23],\ [73, 73, 2*w^2 - 3],\ [73, 73, -3*w^2 - w + 7],\ [73, 73, -6*w^2 + 4*w + 25],\ [79, 79, w^2 - 5*w + 1],\ [79, 79, 3*w^2 - 3*w - 11],\ [83, 83, 2*w^2 - 2*w - 3],\ [109, 109, w^2 - 3*w - 3],\ [113, 113, 3*w^2 - 3*w - 13],\ [121, 11, 3*w^2 - w - 9],\ [125, 5, -5],\ [131, 131, -6*w^2 + 2*w + 25],\ [137, 137, -w^2 + w - 3],\ [149, 149, 2*w - 7],\ [151, 151, w^2 - 3*w - 5],\ [157, 157, 3*w^2 - 3*w - 7],\ [163, 163, 2*w^2 - 13],\ [167, 167, -4*w + 5],\ [173, 173, -7*w^2 + 3*w + 27],\ [179, 179, 4*w^2 - 4*w - 11],\ [181, 181, 4*w^2 - 15],\ [181, 181, w^2 - 3*w + 5],\ [181, 181, w^2 + 3*w - 5],\ [193, 193, 2*w^2 - 4*w - 5],\ [197, 197, 2*w^2 + 2*w - 7],\ [211, 211, 4*w^2 - 2*w - 13],\ [211, 211, -7*w^2 + 5*w + 29],\ [211, 211, w^2 - w - 9],\ [223, 223, 5*w^2 - w - 23],\ [227, 227, -3*w^2 + 3*w + 17],\ [227, 227, 3*w^2 - w - 7],\ [227, 227, 3*w^2 + w - 11],\ [229, 229, 5*w^2 - w - 21],\ [233, 233, 3*w^2 - 5*w - 7],\ [239, 239, -w^2 + 7*w - 5],\ [257, 257, -4*w - 3],\ [257, 257, w^2 - 5*w - 1],\ [257, 257, -3*w^2 + w + 17],\ [263, 263, 3*w^2 - 3*w - 5],\ [271, 271, 4*w^2 - 4*w - 17],\ [271, 271, 3*w^2 - w - 3],\ [271, 271, w^2 + 3*w - 7],\ [283, 283, 6*w - 1],\ [289, 17, w^2 + 3*w - 9],\ [293, 293, 3*w^2 - w - 5],\ [307, 307, 2*w^2 + 2*w - 9],\ [307, 307, -2*w^2 + 2*w - 3],\ [307, 307, 4*w^2 - 17],\ [311, 311, w^2 + w - 11],\ [311, 311, 2*w^2 - 4*w - 7],\ [311, 311, -2*w^2 - 2*w + 13],\ [313, 313, -2*w - 7],\ [313, 313, 4*w^2 - 19],\ [313, 313, -5*w^2 - w + 13],\ [331, 331, 2*w^2 - 4*w - 11],\ [331, 331, 6*w^2 - 4*w - 21],\ [331, 331, -4*w^2 + 2*w + 21],\ [343, 7, -7],\ [347, 347, -2*w^2 + 8*w - 1],\ [349, 349, w^2 - 7*w + 1],\ [353, 353, -6*w^2 + 2*w + 21],\ [361, 19, -5*w^2 + 3*w + 25],\ [367, 367, 3*w^2 + w - 15],\ [373, 373, 2*w^2 - 4*w - 9],\ [383, 383, -9*w^2 + 3*w + 37],\ [401, 401, 4*w^2 - 2*w - 11],\ [409, 409, 4*w^2 - 4*w - 9],\ [431, 431, -5*w^2 + 5*w + 19],\ [439, 439, 2*w - 9],\ [443, 443, w^2 - 5*w - 3],\ [443, 443, 5*w^2 - 5*w - 23],\ [443, 443, 3*w^2 - 5*w - 17],\ [449, 449, -4*w^2 + 4*w + 1],\ [461, 461, 5*w^2 - 7*w - 9],\ [467, 467, 5*w^2 + w - 17],\ [479, 479, 2*w^2 + 4*w - 7],\ [487, 487, 5*w^2 - 5*w - 13],\ [499, 499, -w^2 + 3*w - 7],\ [509, 509, -7*w^2 + w + 27],\ [521, 521, w^2 - w - 11],\ [523, 523, 4*w^2 - 6*w - 11],\ [529, 23, 4*w^2 + 2*w - 13],\ [547, 547, -11*w^2 + 5*w + 43],\ [563, 563, 4*w^2 - 7],\ [569, 569, -6*w - 1],\ [569, 569, 4*w^2 - 5],\ [569, 569, w^2 - 5*w - 9],\ [571, 571, 5*w^2 - 3*w - 15],\ [577, 577, w^2 + 5*w - 7],\ [599, 599, 4*w^2 - 4*w - 7],\ [601, 601, -12*w^2 + 8*w + 51],\ [613, 613, 4*w^2 + 1],\ [643, 643, 6*w^2 - 2*w - 31],\ [647, 647, 2*w^2 - 2*w - 15],\ [647, 647, 4*w^2 - 4*w - 23],\ [647, 647, w^2 - 5*w - 7],\ [661, 661, -8*w^2 + 6*w + 39],\ [673, 673, 3*w^2 - 5*w - 15],\ [683, 683, -w^2 + 9*w - 7],\ [701, 701, 4*w^2 - 4*w - 5],\ [709, 709, 4*w^2 - 2*w - 7],\ [719, 719, 3*w^2 - 5*w - 13],\ [727, 727, w^2 - 7*w - 1],\ [733, 733, 2*w^2 + 4*w - 9],\ [733, 733, 3*w^2 + 3*w - 11],\ [733, 733, w^2 + w - 13],\ [743, 743, 2*w^2 - 6*w - 5],\ [751, 751, 6*w^2 - 2*w - 19],\ [761, 761, -12*w^2 + 6*w + 47],\ [761, 761, 3*w^2 - 5*w - 21],\ [761, 761, 2*w^2 + 6*w - 7],\ [769, 769, -6*w^2 + 6*w + 23],\ [773, 773, -2*w^2 + 2*w - 5],\ [773, 773, -13*w^2 + 5*w + 57],\ [773, 773, -11*w^2 + 7*w + 51],\ [787, 787, 5*w^2 - w - 13],\ [797, 797, -2*w^2 + 8*w - 11],\ [811, 811, -5*w^2 + 5*w + 1],\ [821, 821, -7*w^2 + 3*w + 35],\ [821, 821, -4*w^2 + 2*w + 23],\ [821, 821, 5*w^2 + w - 19],\ [823, 823, w^2 + 5*w - 13],\ [823, 823, -12*w^2 + 4*w + 49],\ [823, 823, -7*w^2 + w + 29],\ [829, 829, -w^2 + w - 7],\ [839, 839, 4*w^2 + 2*w - 15],\ [841, 29, 4*w^2 - 6*w - 13],\ [853, 853, 7*w^2 - 7*w - 25],\ [863, 863, 7*w^2 - 5*w - 35],\ [877, 877, -6*w - 5],\ [877, 877, w^2 + 5*w - 11],\ [877, 877, 5*w^2 - 3*w - 13],\ [881, 881, w^2 - 3*w - 13],\ [887, 887, -9*w^2 + 5*w + 33],\ [907, 907, w^2 - 9*w + 1],\ [911, 911, -6*w^2 + 6*w + 25],\ [919, 919, 5*w^2 - 3*w - 27],\ [929, 929, 2*w - 11],\ [937, 937, -7*w^2 + w + 31],\ [941, 941, -6*w^2 + 4*w + 31],\ [941, 941, -8*w^2 + 2*w + 27],\ [941, 941, 3*w^2 + 5*w - 9],\ [947, 947, -10*w + 7],\ [947, 947, 2*w^2 + 8*w - 7],\ [947, 947, 2*w^2 + 4*w - 11],\ [961, 31, -14*w^2 + 8*w + 55],\ [967, 967, -w^2 - w - 7],\ [971, 971, -10*w^2 + 8*w + 39],\ [977, 977, -10*w^2 + 6*w + 37],\ [983, 983, 3*w^2 + 3*w - 13],\ [983, 983, -4*w - 11],\ [983, 983, -10*w^2 + 4*w + 37],\ [997, 997, w^2 + 9*w - 7],\ [997, 997, 5*w^2 - 7*w - 27],\ [997, 997, 6*w^2 - 8*w - 11]] primes = [ZF.ideal(I) for I in primes_array] heckePol = x^6 - x^5 - 12*x^4 + 12*x^3 + 35*x^2 - 31*x - 12 K. = NumberField(heckePol) hecke_eigenvalues_array = [e, -1/4*e^5 + 5/2*e^3 - 21/4*e, -1/4*e^5 - 1/2*e^4 + 5/2*e^3 + 7/2*e^2 - 25/4*e - 3, 1/4*e^5 + 1/2*e^4 - 5/2*e^3 - 9/2*e^2 + 21/4*e + 9, 1, 1/4*e^5 + 1/2*e^4 - 3/2*e^3 - 9/2*e^2 - 7/4*e + 9, 2*e - 2, 1/4*e^5 - 1/2*e^4 - 5/2*e^3 + 9/2*e^2 + 21/4*e - 3, 3/4*e^5 + 1/2*e^4 - 17/2*e^3 - 5/2*e^2 + 83/4*e - 1, -2*e^2 + 8, -1/4*e^5 + 1/2*e^4 + 3/2*e^3 - 11/2*e^2 + 3/4*e + 9, 1/2*e^5 - 5*e^3 + 21/2*e + 2, e^3 - 2*e^2 - 7*e + 8, e^3 + 2*e^2 - 5*e - 10, -e^5 + 11*e^3 - 26*e + 6, -3/4*e^5 - 1/2*e^4 + 13/2*e^3 + 7/2*e^2 - 39/4*e - 1, -3/4*e^5 - 3/2*e^4 + 15/2*e^3 + 21/2*e^2 - 67/4*e - 7, 1/2*e^5 - e^4 - 6*e^3 + 7*e^2 + 27/2*e - 4, -1/2*e^5 + 5*e^3 - 2*e^2 - 17/2*e + 8, 1/4*e^5 - 1/2*e^4 - 5/2*e^3 + 7/2*e^2 + 9/4*e - 1, -1/4*e^5 - 1/2*e^4 + 3/2*e^3 + 7/2*e^2 + 11/4*e - 7, 1/2*e^5 + e^4 - 7*e^3 - 9*e^2 + 45/2*e + 8, -1/2*e^5 - e^4 + 5*e^3 + 7*e^2 - 17/2*e - 6, -1/4*e^5 - 1/2*e^4 + 9/2*e^3 + 9/2*e^2 - 85/4*e - 7, 1/2*e^5 + 2*e^4 - 5*e^3 - 18*e^2 + 21/2*e + 24, 1/4*e^5 - 1/2*e^4 - 5/2*e^3 + 11/2*e^2 + 33/4*e - 13, 3/4*e^5 - 3/2*e^4 - 19/2*e^3 + 27/2*e^2 + 95/4*e - 15, -e^3 + 7*e - 6, -e^5 + 11*e^3 + 2*e^2 - 24*e - 6, 1/4*e^5 + 3/2*e^4 - 7/2*e^3 - 25/2*e^2 + 37/4*e + 15, e^5 - 11*e^3 + 2*e^2 + 26*e - 10, -2*e^5 - 2*e^4 + 19*e^3 + 16*e^2 - 39*e - 22, e^5 + 2*e^4 - 9*e^3 - 16*e^2 + 16*e + 26, e^5 + e^4 - 8*e^3 - 7*e^2 + 5*e + 12, -3/4*e^5 - 5/2*e^4 + 15/2*e^3 + 39/2*e^2 - 67/4*e - 21, -3/2*e^5 + e^4 + 14*e^3 - 11*e^2 - 49/2*e + 18, 1/2*e^5 - 5*e^3 + 2*e^2 + 25/2*e - 4, -1/2*e^5 - e^4 + 3*e^3 + 7*e^2 + 7/2*e - 10, 3/2*e^5 + e^4 - 18*e^3 - 5*e^2 + 101/2*e - 4, e^5 + e^4 - 10*e^3 - 9*e^2 + 19*e + 20, 3/2*e^5 + e^4 - 17*e^3 - 9*e^2 + 91/2*e + 12, e^4 + 2*e^3 - 9*e^2 - 6*e + 8, -7/4*e^5 - 5/2*e^4 + 37/2*e^3 + 45/2*e^2 - 191/4*e - 31, -e^5 + 13*e^3 - 36*e - 4, 5/4*e^5 - 3/2*e^4 - 25/2*e^3 + 29/2*e^2 + 117/4*e - 19, 7/4*e^5 - 1/2*e^4 - 37/2*e^3 + 13/2*e^2 + 167/4*e - 9, 5/2*e^5 + e^4 - 28*e^3 - 5*e^2 + 131/2*e, 1/4*e^5 + 1/2*e^4 - 3/2*e^3 - 5/2*e^2 - 31/4*e - 3, 1/2*e^5 - e^4 - 5*e^3 + 7*e^2 + 25/2*e + 8, -e^4 + 9*e^2 - 4*e - 18, -e^5 + 11*e^3 + 2*e^2 - 24*e, -e^5 - e^4 + 8*e^3 + 5*e^2 - 5*e, 2*e^5 - 23*e^3 + 61*e - 6, -e^5 - e^4 + 10*e^3 + 7*e^2 - 21*e, -1/2*e^5 + e^4 + 4*e^3 - 9*e^2 - 7/2*e, 3*e^3 - 23*e - 4, -1/4*e^5 - 3/2*e^4 + 7/2*e^3 + 19/2*e^2 - 49/4*e - 1, e^3 + 4*e^2 - 9*e - 28, -3/4*e^5 + 1/2*e^4 + 21/2*e^3 - 13/2*e^2 - 107/4*e + 17, e^5 + 2*e^4 - 10*e^3 - 12*e^2 + 25*e - 4, 1/2*e^5 + e^4 - e^3 - 7*e^2 - 31/2*e + 12, -e^5 + 12*e^3 - 35*e - 4, 2*e^5 + 2*e^4 - 24*e^3 - 12*e^2 + 68*e - 4, -9/4*e^5 - 1/2*e^4 + 43/2*e^3 + 15/2*e^2 - 157/4*e - 31, 3/4*e^5 + 3/2*e^4 - 17/2*e^3 - 13/2*e^2 + 103/4*e - 9, -3*e^5 - e^4 + 30*e^3 + 5*e^2 - 63*e, 3/2*e^5 + e^4 - 17*e^3 - 11*e^2 + 83/2*e + 12, 2*e^3 - 2*e^2 - 12*e + 2, -e^5 - 2*e^4 + 13*e^3 + 12*e^2 - 42*e + 2, -1/2*e^5 - e^4 + 8*e^3 + 9*e^2 - 51/2*e - 16, 7/4*e^5 + 3/2*e^4 - 39/2*e^3 - 21/2*e^2 + 191/4*e + 11, -1/4*e^5 - 3/2*e^4 + 7/2*e^3 + 15/2*e^2 - 57/4*e + 11, 1/2*e^5 + e^4 - 7*e^3 - 11*e^2 + 53/2*e + 26, -5/4*e^5 + 3/2*e^4 + 31/2*e^3 - 27/2*e^2 - 173/4*e + 23, 1/2*e^5 + 2*e^4 - 7*e^3 - 14*e^2 + 41/2*e + 6, -e^5 + 13*e^3 - 36*e - 10, 5/4*e^5 + 3/2*e^4 - 31/2*e^3 - 21/2*e^2 + 169/4*e + 15, 1/2*e^5 + 3*e^4 - 3*e^3 - 19*e^2 + 1/2*e + 8, e^5 - 8*e^3 - 4*e^2 + 7*e + 20, -5/4*e^5 + 1/2*e^4 + 25/2*e^3 + 1/2*e^2 - 109/4*e - 19, -e^5 - e^4 + 12*e^3 + 11*e^2 - 25*e - 24, -e^5 + 13*e^3 - 2*e^2 - 46*e + 18, 3/2*e^5 + e^4 - 13*e^3 - e^2 + 35/2*e - 16, -3/2*e^5 + 15*e^3 + 2*e^2 - 67/2*e - 6, 3/4*e^5 - 1/2*e^4 - 19/2*e^3 + 7/2*e^2 + 131/4*e + 5, -e^5 - 2*e^4 + 12*e^3 + 18*e^2 - 27*e - 36, e^5 + e^4 - 10*e^3 - 5*e^2 + 25*e, 3/4*e^5 - 3/2*e^4 - 25/2*e^3 + 27/2*e^2 + 155/4*e - 21, -7/4*e^5 - 3/2*e^4 + 39/2*e^3 + 35/2*e^2 - 187/4*e - 27, -3/4*e^5 - 3/2*e^4 + 19/2*e^3 + 27/2*e^2 - 127/4*e - 21, e^5 - 2*e^4 - 7*e^3 + 22*e^2 + 2*e - 36, e^5 - 2*e^4 - 9*e^3 + 16*e^2 + 8*e - 30, -1/4*e^5 + 3/2*e^4 + 11/2*e^3 - 21/2*e^2 - 101/4*e + 5, -e^5 - 2*e^4 + 8*e^3 + 14*e^2 - 19*e - 4, 2*e^5 + 3*e^4 - 22*e^3 - 23*e^2 + 58*e + 24, 3/2*e^5 + e^4 - 11*e^3 - e^2 + 7/2*e - 12, -2*e^5 + 2*e^4 + 20*e^3 - 16*e^2 - 40*e + 20, -7/4*e^5 - 1/2*e^4 + 35/2*e^3 + 9/2*e^2 - 107/4*e - 13, 11/4*e^5 + 1/2*e^4 - 61/2*e^3 - 17/2*e^2 + 283/4*e + 23, -3/4*e^5 + 3/2*e^4 + 13/2*e^3 - 7/2*e^2 - 27/4*e - 27, e^5 + 2*e^4 - 14*e^3 - 16*e^2 + 49*e + 12, -5/2*e^5 - e^4 + 23*e^3 + 5*e^2 - 93/2*e + 12, 5/4*e^5 - 3/2*e^4 - 21/2*e^3 + 27/2*e^2 + 73/4*e - 9, -e^5 - e^4 + 8*e^3 + 11*e^2 - 9*e - 16, -2*e^3 + 2*e^2 + 10*e + 8, 2*e^4 - 18*e^2 + 4*e + 12, 5/4*e^5 - 1/2*e^4 - 27/2*e^3 - 9/2*e^2 + 113/4*e + 23, 3/2*e^5 + 3*e^4 - 16*e^3 - 31*e^2 + 81/2*e + 44, -1/2*e^5 - 3*e^4 + 9*e^3 + 25*e^2 - 57/2*e - 22, 2*e^5 - 3*e^4 - 22*e^3 + 23*e^2 + 56*e - 24, -2*e^5 - 4*e^4 + 24*e^3 + 34*e^2 - 58*e - 42, -9/4*e^5 - 5/2*e^4 + 45/2*e^3 + 27/2*e^2 - 177/4*e - 3, -11/4*e^5 - 5/2*e^4 + 63/2*e^3 + 31/2*e^2 - 379/4*e - 1, 3/4*e^5 + 1/2*e^4 - 17/2*e^3 - 3/2*e^2 + 71/4*e + 5, -3*e^5 + 30*e^3 - 2*e^2 - 57*e, 4*e^5 + 2*e^4 - 38*e^3 - 16*e^2 + 70*e + 48, -1/4*e^5 + 5/2*e^4 + 5/2*e^3 - 51/2*e^2 + 7/4*e + 41, 1/2*e^5 + 3*e^4 + 2*e^3 - 23*e^2 - 61/2*e + 24, 1/4*e^5 + 1/2*e^4 + 5/2*e^3 + 9/2*e^2 - 75/4*e - 37, -e^5 - 2*e^4 + 14*e^3 + 12*e^2 - 47*e + 2, 4*e^5 + 2*e^4 - 38*e^3 - 10*e^2 + 72*e - 4, 15/4*e^5 + 7/2*e^4 - 79/2*e^3 - 47/2*e^2 + 355/4*e + 23, -2*e^5 - 2*e^4 + 22*e^3 + 10*e^2 - 52*e, 7/4*e^5 + 7/2*e^4 - 33/2*e^3 - 57/2*e^2 + 131/4*e + 35, -7/2*e^5 - 3*e^4 + 33*e^3 + 25*e^2 - 127/2*e - 30, 17/4*e^5 + 3/2*e^4 - 85/2*e^3 - 13/2*e^2 + 329/4*e + 3, 3*e^5 - 26*e^3 + 2*e^2 + 41*e - 6, -3/2*e^5 - 3*e^4 + 18*e^3 + 21*e^2 - 105/2*e - 4, -2*e^5 + 21*e^3 - 2*e^2 - 49*e - 6, 9/4*e^5 - 1/2*e^4 - 53/2*e^3 + 9/2*e^2 + 253/4*e + 9, -9/2*e^5 - 2*e^4 + 43*e^3 + 22*e^2 - 157/2*e - 54, -2*e^5 - 3*e^4 + 22*e^3 + 17*e^2 - 50*e + 8, 1/2*e^5 - 3*e^4 - 5*e^3 + 25*e^2 + 25/2*e, -3*e^5 - e^4 + 30*e^3 + 7*e^2 - 57*e + 8, -9/4*e^5 - 7/2*e^4 + 41/2*e^3 + 57/2*e^2 - 169/4*e - 51, -1/2*e^5 - 4*e^4 + 3*e^3 + 30*e^2 - 5/2*e - 36, -1/2*e^5 - e^4 + 5*e^3 + 15*e^2 - 9/2*e - 24, -3/2*e^5 - 4*e^4 + 17*e^3 + 36*e^2 - 99/2*e - 58, 3*e^5 - 32*e^3 - 4*e^2 + 73*e + 8, e^5 + 2*e^4 - 14*e^3 - 10*e^2 + 53*e + 8, -1/2*e^5 + 2*e^4 + 7*e^3 - 18*e^2 - 53/2*e + 26, -4*e^5 + 42*e^3 + 4*e^2 - 86*e - 12, 1/2*e^5 - 3*e^4 - 7*e^3 + 21*e^2 + 21/2*e - 4, -11/4*e^5 - 1/2*e^4 + 53/2*e^3 + 3/2*e^2 - 167/4*e + 11, 1/4*e^5 + 3/2*e^4 - 11/2*e^3 - 23/2*e^2 + 81/4*e + 9, 3*e^5 + 2*e^4 - 31*e^3 - 10*e^2 + 64*e + 26, -2*e^5 - 2*e^4 + 18*e^3 + 4*e^2 - 22*e + 38, 9/2*e^5 + e^4 - 42*e^3 + e^2 + 147/2*e - 16, -1/4*e^5 - 3/2*e^4 + 5/2*e^3 + 27/2*e^2 - 37/4*e - 33, -4*e^5 - 2*e^4 + 45*e^3 + 8*e^2 - 121*e + 18, -1/2*e^5 + 5*e^4 + 5*e^3 - 33*e^2 - 21/2*e + 2, -1/2*e^5 + e^4 + 2*e^3 - 13*e^2 + 9/2*e + 18, e^5 - 10*e^3 + 6*e^2 + 31*e - 40, 1/4*e^5 - 5/2*e^4 - 9/2*e^3 + 47/2*e^2 + 25/4*e - 57, -3*e^5 + e^4 + 30*e^3 - 11*e^2 - 55*e + 8, 4*e^4 - 2*e^3 - 26*e^2 + 8*e - 6, -1/2*e^5 + e^4 + 11*e^3 - 13*e^2 - 85/2*e + 42, -e^5 + 3*e^4 + 12*e^3 - 25*e^2 - 39*e + 24, 2*e^5 - 21*e^3 + 8*e^2 + 57*e - 30, 7/2*e^5 + 6*e^4 - 39*e^3 - 52*e^2 + 199/2*e + 66, 7/4*e^5 - 5/2*e^4 - 33/2*e^3 + 43/2*e^2 + 123/4*e - 39, -5*e^5 - 4*e^4 + 54*e^3 + 30*e^2 - 123*e - 34, -1/2*e^5 + e^4 + 7*e^3 - 13*e^2 - 41/2*e + 38, -1/4*e^5 + 3/2*e^4 - 3/2*e^3 - 29/2*e^2 + 79/4*e + 3, 13/4*e^5 + 3/2*e^4 - 63/2*e^3 - 29/2*e^2 + 241/4*e + 39, 1/4*e^5 - 3/2*e^4 - 7/2*e^3 + 23/2*e^2 + 25/4*e - 15, 2*e^5 - 28*e^3 + 4*e^2 + 90*e - 12, -1/2*e^5 + e^4 + e^3 + e^2 + 31/2*e - 42, -3/4*e^5 + 5/2*e^4 + 23/2*e^3 - 45/2*e^2 - 175/4*e + 41, 2*e^5 + 4*e^4 - 22*e^3 - 30*e^2 + 54*e + 50, -2*e^5 + 20*e^3 - 4*e^2 - 38*e + 38] hecke_eigenvalues = {} for i in range(len(hecke_eigenvalues_array)): hecke_eigenvalues[primes[i]] = hecke_eigenvalues_array[i] AL_eigenvalues = {} AL_eigenvalues[ZF.ideal([19, 19, w^2 - w + 1])] = -1 # EXAMPLE: # pp = ZF.ideal(2).factor()[0][0] # hecke_eigenvalues[pp]