# Properties

 Base field 3.3.316.1 Weight [2, 2, 2] Level norm 17 Level $[17, 17, -w^{2} - w + 3]$ Label 3.3.316.1-17.1-b Dimension 3 CM no Base change no

# Related objects

• L-function not available

## Base field 3.3.316.1

Generator $$w$$, with minimal polynomial $$x^{3} - x^{2} - 4x + 2$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2, 2] Level $[17, 17, -w^{2} - w + 3]$ Label 3.3.316.1-17.1-b Dimension 3 Is CM no Is base change no Parent newspace dimension 5

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{3} - 4x + 1$$
Norm Prime Eigenvalue
2 $[2, 2, -w]$ $\phantom{-}e$
2 $[2, 2, w - 1]$ $\phantom{-}e$
11 $[11, 11, w^{2} - w - 1]$ $\phantom{-}e^{2} + 2e - 3$
17 $[17, 17, -w^{2} - w + 3]$ $\phantom{-}1$
19 $[19, 19, w^{2} - w + 1]$ $\phantom{-}e^{2} - e - 2$
23 $[23, 23, 2w - 3]$ $-e^{2} + 1$
27 $[27, 3, 3]$ $-2e^{2} - 3e + 7$
29 $[29, 29, 2w + 1]$ $-e^{2} - 3e$
31 $[31, 31, 2w^{2} - 2w - 9]$ $\phantom{-}e^{2} + e + 4$
37 $[37, 37, 2w^{2} - 2w - 5]$ $-e^{2} + 4e + 3$
41 $[41, 41, 2w^{2} - 9]$ $-e - 3$
43 $[43, 43, w^{2} + w - 5]$ $-4e^{2} - 3e + 9$
43 $[43, 43, -3w^{2} + w + 15]$ $\phantom{-}3e^{2} + e - 2$
43 $[43, 43, -2w^{2} + 2w + 11]$ $-3e^{2} + 7$
53 $[53, 53, w^{2} - w - 7]$ $-4e^{2} - 6e + 12$
61 $[61, 61, 4w^{2} - 2w - 15]$ $\phantom{-}5e^{2} - 15$
67 $[67, 67, -5w^{2} + 3w + 23]$ $\phantom{-}e^{2} + e + 8$
73 $[73, 73, 2w^{2} - 3]$ $-2e^{2} + e + 9$
73 $[73, 73, -3w^{2} - w + 7]$ $-e^{2} - 4e - 1$
73 $[73, 73, -6w^{2} + 4w + 25]$ $-e^{2} + 6e + 1$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
17 $[17, 17, -w^{2} - w + 3]$ $-1$