Properties

Base field 3.3.1849.1
Weight [2, 2, 2]
Level norm 2
Level $[2,2,\frac{1}{2}w^{2} - \frac{3}{2}w - 1]$
Label 3.3.1849.1-2.2-a
Dimension 2
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 3.3.1849.1

Generator \(w\), with minimal polynomial \(x^{3} - x^{2} - 14x - 8\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2, 2]
Level $[2,2,\frac{1}{2}w^{2} - \frac{3}{2}w - 1]$
Label 3.3.1849.1-2.2-a
Dimension 2
Is CM no
Is base change no
Parent newspace dimension 7

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} - 3\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -\frac{1}{2}w^{2} + \frac{1}{2}w + 8]$ $-1$
2 $[2, 2, \frac{1}{2}w^{2} - \frac{3}{2}w - 1]$ $-1$
2 $[2, 2, w + 3]$ $\phantom{-}e$
11 $[11, 11, -w^{2} + 3w + 7]$ $\phantom{-}2$
11 $[11, 11, -2w - 1]$ $\phantom{-}2e - 2$
11 $[11, 11, -w^{2} + w + 11]$ $-2e - 2$
27 $[27, 3, 3]$ $-4e - 2$
41 $[41, 41, 2w + 5]$ $-2$
41 $[41, 41, -w^{2} + 3w + 3]$ $\phantom{-}2e - 6$
41 $[41, 41, -w^{2} + w + 15]$ $\phantom{-}6e$
43 $[43, 43, -3w^{2} + 11w + 11]$ $\phantom{-}6$
47 $[47, 47, -w^{2} - w + 5]$ $-4e + 4$
47 $[47, 47, w^{2} - 5w - 3]$ $\phantom{-}4e$
47 $[47, 47, -2w^{2} + 4w + 23]$ $-2e - 8$
59 $[59, 59, -w^{2} + w + 13]$ $-4e - 8$
59 $[59, 59, w^{2} - 3w - 5]$ $\phantom{-}4$
59 $[59, 59, -2w - 3]$ $-2e$
97 $[97, 97, 7w^{2} - 11w - 91]$ $\phantom{-}2e$
97 $[97, 97, -2w^{2} - 8w - 5]$ $\phantom{-}4e - 2$
97 $[97, 97, 5w^{2} - 19w - 15]$ $\phantom{-}4e - 6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2,2,\frac{1}{2}w^{2} - \frac{3}{2}w - 1]$ $1$