Properties

Label 3.3.1492.1-10.1-a
Base field 3.3.1492.1
Weight $[2, 2, 2]$
Level norm $10$
Level $[10, 10, 2w^{2} - 3w - 15]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field 3.3.1492.1

Generator \(w\), with minimal polynomial \(x^{3} - x^{2} - 9x - 5\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2, 2]$
Level: $[10, 10, 2w^{2} - 3w - 15]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $8$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w - 1]$ $\phantom{-}1$
5 $[5, 5, w]$ $-1$
7 $[7, 7, w^{2} - 2w - 8]$ $\phantom{-}1$
7 $[7, 7, -2w^{2} + 3w + 16]$ $\phantom{-}0$
7 $[7, 7, -w^{2} + 2w + 6]$ $\phantom{-}3$
11 $[11, 11, w^{2} - 2w - 2]$ $\phantom{-}3$
19 $[19, 19, -w + 2]$ $\phantom{-}0$
23 $[23, 23, -w^{2} + 3w + 1]$ $\phantom{-}0$
25 $[25, 5, w^{2} - w - 9]$ $\phantom{-}3$
27 $[27, 3, 3]$ $\phantom{-}1$
29 $[29, 29, -w^{2} - w + 1]$ $\phantom{-}6$
29 $[29, 29, w^{2} - 2w - 4]$ $-3$
29 $[29, 29, -w^{2} + w + 11]$ $-6$
43 $[43, 43, 2w^{2} - 3w - 18]$ $-8$
47 $[47, 47, -2w + 7]$ $\phantom{-}3$
53 $[53, 53, w^{2} - w - 3]$ $\phantom{-}3$
61 $[61, 61, w^{2} + 2w + 2]$ $-8$
67 $[67, 67, -2w^{2} + 5w + 8]$ $\phantom{-}15$
79 $[79, 79, w^{2} - 3w - 9]$ $\phantom{-}1$
97 $[97, 97, -w^{2} - 2w + 2]$ $\phantom{-}9$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w - 1]$ $-1$
$5$ $[5, 5, w]$ $1$