Properties

Base field 3.3.1129.1
Weight [2, 2, 2]
Level norm 24
Level $[24, 6, 2w]$
Label 3.3.1129.1-24.1-b
Dimension 2
CM no
Base change no

Related objects

Downloads

Learn more about

Base field 3.3.1129.1

Generator \(w\), with minimal polynomial \(x^{3} - 7x - 3\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2, 2]
Level $[24, 6, 2w]$
Label 3.3.1129.1-24.1-b
Dimension 2
Is CM no
Is base change no
Parent newspace dimension 24

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
\(x^{2} - 2\)

  Show full eigenvalues   Hide large eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w]$ $\phantom{-}1$
3 $[3, 3, w + 1]$ $\phantom{-}e$
3 $[3, 3, w + 2]$ $\phantom{-}e$
8 $[8, 2, 2]$ $\phantom{-}1$
11 $[11, 11, -w^{2} + 5]$ $-4e$
13 $[13, 13, w^{2} - w - 7]$ $\phantom{-}0$
17 $[17, 17, -w^{2} + w + 4]$ $\phantom{-}e$
19 $[19, 19, -w^{2} - w + 4]$ $-8$
29 $[29, 29, 2w^{2} - 2w - 11]$ $-3e$
31 $[31, 31, w^{2} - 2w - 4]$ $\phantom{-}e$
37 $[37, 37, -2w^{2} + 3w + 7]$ $-e$
41 $[41, 41, w^{2} - 2]$ $\phantom{-}0$
59 $[59, 59, 2w^{2} - 13]$ $-10$
61 $[61, 61, w^{2} + w - 10]$ $-8$
67 $[67, 67, 2w^{2} - w - 11]$ $-4e$
73 $[73, 73, -w^{2} - 1]$ $-10$
83 $[83, 83, w^{2} - w - 10]$ $\phantom{-}0$
89 $[89, 89, -w^{2} + 4w - 2]$ $-8$
97 $[97, 97, w^{2} - 2w - 7]$ $\phantom{-}0$
97 $[97, 97, -w^{2} - 4w - 5]$ $-14$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, w]$ $-1$
8 $[8, 2, 2]$ $-1$