# Properties

 Base field 3.3.1101.1 Weight [2, 2, 2] Level norm 8 Level $[8, 8, -w^{2} + 8]$ Label 3.3.1101.1-8.2-a Dimension 2 CM no Base change no

# Related objects

• L-function not available

## Base field 3.3.1101.1

Generator $$w$$, with minimal polynomial $$x^{3} - x^{2} - 9x + 12$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2, 2] Level $[8, 8, -w^{2} + 8]$ Label 3.3.1101.1-8.2-a Dimension 2 Is CM no Is base change no Parent newspace dimension 6

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{2} + x - 4$$
Norm Prime Eigenvalue
2 $[2, 2, w - 2]$ $\phantom{-}0$
3 $[3, 3, -w + 3]$ $\phantom{-}e$
3 $[3, 3, w - 1]$ $-e$
4 $[4, 2, w^{2} + w - 7]$ $-1$
19 $[19, 19, w + 1]$ $-2e - 4$
23 $[23, 23, w^{2} - 2w - 1]$ $\phantom{-}2e$
31 $[31, 31, -2w^{2} + 19]$ $-e + 4$
31 $[31, 31, -w^{2} + 5]$ $\phantom{-}4e$
31 $[31, 31, -3w + 5]$ $\phantom{-}4e$
41 $[41, 41, w^{2} + 2w - 7]$ $\phantom{-}2e + 6$
43 $[43, 43, w^{2} - 11]$ $-3e$
47 $[47, 47, 3w - 7]$ $\phantom{-}3e - 4$
53 $[53, 53, -3w^{2} - 6w + 11]$ $-e - 6$
59 $[59, 59, 2w - 1]$ $-5e$
67 $[67, 67, 2w^{2} + w - 19]$ $\phantom{-}3e + 8$
67 $[67, 67, 3w^{2} + 2w - 25]$ $\phantom{-}2e - 4$
67 $[67, 67, w - 5]$ $-12$
73 $[73, 73, -4w^{2} - 3w + 29]$ $-4e - 6$
73 $[73, 73, 2w^{2} - w - 11]$ $\phantom{-}4e - 2$
73 $[73, 73, w^{2} + 2w - 11]$ $-10$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w - 2]$ $1$