# Properties

 Base field $$\Q(\sqrt{93})$$ Weight [2, 2] Level norm 196 Level $[196, 14, 14]$ Label 2.2.93.1-196.1-i Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{93})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 23$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[196, 14, 14]$ Label 2.2.93.1-196.1-i Dimension 1 Is CM no Is base change yes Parent newspace dimension 162

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w + 5]$ $-2$
4 $[4, 2, 2]$ $\phantom{-}1$
7 $[7, 7, w - 6]$ $\phantom{-}1$
7 $[7, 7, -w - 5]$ $\phantom{-}1$
11 $[11, 11, -w - 3]$ $\phantom{-}0$
11 $[11, 11, w - 4]$ $\phantom{-}0$
17 $[17, 17, w + 2]$ $\phantom{-}6$
17 $[17, 17, w - 3]$ $\phantom{-}6$
19 $[19, 19, w + 6]$ $\phantom{-}2$
19 $[19, 19, -w + 7]$ $\phantom{-}2$
23 $[23, 23, w]$ $\phantom{-}0$
23 $[23, 23, w - 1]$ $\phantom{-}0$
25 $[25, 5, -5]$ $-10$
29 $[29, 29, -2w + 9]$ $-6$
29 $[29, 29, 2w + 7]$ $-6$
31 $[31, 31, 3w - 17]$ $-4$
53 $[53, 53, 3w - 14]$ $\phantom{-}6$
53 $[53, 53, -3w - 11]$ $\phantom{-}6$
67 $[67, 67, -w - 9]$ $-4$
67 $[67, 67, w - 10]$ $-4$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $-1$
7 $[7, 7, w - 6]$ $-1$
7 $[7, 7, -w - 5]$ $-1$