# Properties

 Label 2.2.93.1-100.1-a Base field $$\Q(\sqrt{93})$$ Weight $[2, 2]$ Level norm $100$ Level $[100, 10, -10]$ Dimension $1$ CM no Base change no

# Related objects

## Base field $$\Q(\sqrt{93})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 23$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2]$ Level: $[100, 10, -10]$ Dimension: $1$ CM: no Base change: no Newspace dimension: $106$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w + 5]$ $\phantom{-}0$
4 $[4, 2, 2]$ $-1$
7 $[7, 7, w - 6]$ $\phantom{-}2$
7 $[7, 7, -w - 5]$ $\phantom{-}2$
11 $[11, 11, -w - 3]$ $\phantom{-}6$
11 $[11, 11, w - 4]$ $-6$
17 $[17, 17, w + 2]$ $\phantom{-}6$
17 $[17, 17, w - 3]$ $-6$
19 $[19, 19, w + 6]$ $\phantom{-}4$
19 $[19, 19, -w + 7]$ $\phantom{-}4$
23 $[23, 23, w]$ $\phantom{-}0$
23 $[23, 23, w - 1]$ $\phantom{-}0$
25 $[25, 5, -5]$ $-1$
29 $[29, 29, -2w + 9]$ $\phantom{-}6$
29 $[29, 29, 2w + 7]$ $-6$
31 $[31, 31, 3w - 17]$ $\phantom{-}4$
53 $[53, 53, 3w - 14]$ $\phantom{-}6$
53 $[53, 53, -3w - 11]$ $-6$
67 $[67, 67, -w - 9]$ $\phantom{-}4$
67 $[67, 67, w - 10]$ $\phantom{-}4$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, 2]$ $1$
$25$ $[25, 5, -5]$ $1$