Base field \(\Q(\sqrt{23}) \)
Generator \(w\), with minimal polynomial \(x^{2} - 23\); narrow class number \(2\) and class number \(1\).
Form
Weight: | $[2, 2]$ |
Level: | $[100, 10, -10]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $40$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, -w - 5]$ | $\phantom{-}0$ |
7 | $[7, 7, -w + 4]$ | $-2$ |
7 | $[7, 7, w + 4]$ | $-2$ |
9 | $[9, 3, 3]$ | $-2$ |
11 | $[11, 11, -2w + 9]$ | $\phantom{-}0$ |
11 | $[11, 11, -2w - 9]$ | $\phantom{-}0$ |
13 | $[13, 13, w + 6]$ | $\phantom{-}2$ |
13 | $[13, 13, -w + 6]$ | $\phantom{-}2$ |
19 | $[19, 19, -w - 2]$ | $\phantom{-}4$ |
19 | $[19, 19, w - 2]$ | $\phantom{-}4$ |
23 | $[23, 23, -w]$ | $-6$ |
25 | $[25, 5, -5]$ | $\phantom{-}1$ |
29 | $[29, 29, 7w + 34]$ | $\phantom{-}6$ |
29 | $[29, 29, 2w + 11]$ | $\phantom{-}6$ |
41 | $[41, 41, -w - 8]$ | $\phantom{-}6$ |
41 | $[41, 41, w - 8]$ | $\phantom{-}6$ |
43 | $[43, 43, 2w - 7]$ | $\phantom{-}10$ |
43 | $[43, 43, -2w - 7]$ | $\phantom{-}10$ |
67 | $[67, 67, 2w - 5]$ | $-2$ |
67 | $[67, 67, -2w - 5]$ | $-2$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, -w - 5]$ | $-1$ |
$25$ | $[25, 5, -5]$ | $-1$ |