Properties

Label 2.2.92.1-100.1-f
Base field \(\Q(\sqrt{23}) \)
Weight $[2, 2]$
Level norm $100$
Level $[100, 10, -10]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{23}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 23\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[100, 10, -10]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $40$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w - 5]$ $\phantom{-}0$
7 $[7, 7, -w + 4]$ $-2$
7 $[7, 7, w + 4]$ $-2$
9 $[9, 3, 3]$ $-2$
11 $[11, 11, -2w + 9]$ $\phantom{-}0$
11 $[11, 11, -2w - 9]$ $\phantom{-}0$
13 $[13, 13, w + 6]$ $\phantom{-}2$
13 $[13, 13, -w + 6]$ $\phantom{-}2$
19 $[19, 19, -w - 2]$ $\phantom{-}4$
19 $[19, 19, w - 2]$ $\phantom{-}4$
23 $[23, 23, -w]$ $-6$
25 $[25, 5, -5]$ $\phantom{-}1$
29 $[29, 29, 7w + 34]$ $\phantom{-}6$
29 $[29, 29, 2w + 11]$ $\phantom{-}6$
41 $[41, 41, -w - 8]$ $\phantom{-}6$
41 $[41, 41, w - 8]$ $\phantom{-}6$
43 $[43, 43, 2w - 7]$ $\phantom{-}10$
43 $[43, 43, -2w - 7]$ $\phantom{-}10$
67 $[67, 67, 2w - 5]$ $-2$
67 $[67, 67, -2w - 5]$ $-2$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w - 5]$ $-1$
$25$ $[25, 5, -5]$ $-1$