# Properties

 Base field $$\Q(\sqrt{85})$$ Weight [2, 2] Level norm 100 Level $[100, 10, 10]$ Label 2.2.85.1-100.1-h Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{85})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 21$$; narrow class number $$2$$ and class number $$2$$.

## Form

 Weight [2, 2] Level $[100, 10, 10]$ Label 2.2.85.1-100.1-h Dimension 1 Is CM no Is base change yes Parent newspace dimension 172

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, w]$ $-1$
3 $[3, 3, w + 2]$ $-1$
4 $[4, 2, 2]$ $\phantom{-}1$
5 $[5, 5, w + 2]$ $\phantom{-}0$
7 $[7, 7, w]$ $-2$
7 $[7, 7, w + 6]$ $-2$
17 $[17, 17, w + 8]$ $\phantom{-}3$
19 $[19, 19, w + 1]$ $\phantom{-}5$
19 $[19, 19, w - 2]$ $\phantom{-}5$
23 $[23, 23, w + 9]$ $-6$
23 $[23, 23, w + 13]$ $-6$
37 $[37, 37, w + 11]$ $-2$
37 $[37, 37, w + 25]$ $-2$
59 $[59, 59, 3w + 10]$ $\phantom{-}0$
59 $[59, 59, 3w - 13]$ $\phantom{-}0$
73 $[73, 73, w + 15]$ $-11$
73 $[73, 73, w + 57]$ $-11$
89 $[89, 89, -w - 10]$ $\phantom{-}15$
89 $[89, 89, w - 11]$ $\phantom{-}15$
97 $[97, 97, w + 22]$ $-2$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $-1$
5 $[5, 5, w + 2]$ $-1$