# Properties

 Base field $$\Q(\sqrt{2})$$ Weight [2, 2] Level norm 73 Level $[73,73,7w - 5]$ Label 2.2.8.1-73.2-b Dimension 3 CM no Base change no

# Related objects

## Base field $$\Q(\sqrt{2})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 2$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[73,73,7w - 5]$ Label 2.2.8.1-73.2-b Dimension 3 Is CM no Is base change no Parent newspace dimension 4

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q(e)$ where $e$ is a root of the defining polynomial:
$$x^{3} + 2x^{2} - 2x - 2$$
Norm Prime Eigenvalue
2 $[2, 2, -w]$ $\phantom{-}e$
7 $[7, 7, -2w + 1]$ $\phantom{-}e^{2} - 1$
7 $[7, 7, -2w - 1]$ $\phantom{-}2e + 2$
9 $[9, 3, 3]$ $-2e^{2} - 4e + 3$
17 $[17, 17, 3w + 1]$ $\phantom{-}2e^{2} + 2e - 6$
17 $[17, 17, 3w - 1]$ $-2e^{2} - 2e + 5$
23 $[23, 23, w + 5]$ $-4e^{2} - 6e + 4$
23 $[23, 23, -w + 5]$ $\phantom{-}3e^{2} + 2e - 9$
25 $[25, 5, 5]$ $\phantom{-}2e^{2} + 2e + 2$
31 $[31, 31, 4w + 1]$ $-3e^{2} - 6e + 3$
31 $[31, 31, -4w + 1]$ $\phantom{-}2e^{2} + 6e - 4$
41 $[41, 41, 2w - 7]$ $\phantom{-}2e - 1$
41 $[41, 41, -2w - 7]$ $\phantom{-}5$
47 $[47, 47, -w - 7]$ $\phantom{-}4e^{2} + 6e - 6$
47 $[47, 47, w - 7]$ $-e^{2} - 4e - 5$
71 $[71, 71, -6w - 1]$ $\phantom{-}2e - 8$
71 $[71, 71, 6w - 1]$ $-e^{2} + 2e + 1$
73 $[73, 73, -7w - 5]$ $\phantom{-}2e^{2} + 6e + 1$
73 $[73, 73, 7w - 5]$ $-1$
79 $[79, 79, -w - 9]$ $\phantom{-}2e$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
73 $[73,73,7w - 5]$ $1$