# Properties

 Label 2.2.77.1-252.1-b Base field $$\Q(\sqrt{77})$$ Weight $[2, 2]$ Level norm $252$ Level $[252, 42, -6w - 18]$ Dimension $1$ CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{77})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 19$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2]$ Level: $[252, 42, -6w - 18]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $146$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, 2]$ $\phantom{-}1$
7 $[7, 7, -w - 3]$ $-1$
9 $[9, 3, 3]$ $\phantom{-}1$
11 $[11, 11, w + 5]$ $-4$
13 $[13, 13, w + 2]$ $\phantom{-}6$
13 $[13, 13, w - 3]$ $\phantom{-}6$
17 $[17, 17, w + 1]$ $\phantom{-}2$
17 $[17, 17, -w + 2]$ $\phantom{-}2$
19 $[19, 19, w]$ $-4$
19 $[19, 19, w - 1]$ $-4$
23 $[23, 23, w + 6]$ $\phantom{-}8$
23 $[23, 23, -w + 7]$ $\phantom{-}8$
25 $[25, 5, -5]$ $-6$
37 $[37, 37, -w - 7]$ $-10$
37 $[37, 37, w - 8]$ $-10$
41 $[41, 41, 2w - 7]$ $-6$
41 $[41, 41, -2w - 5]$ $-6$
53 $[53, 53, -w - 8]$ $\phantom{-}6$
53 $[53, 53, w - 9]$ $\phantom{-}6$
61 $[61, 61, 2w - 5]$ $\phantom{-}6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, 2]$ $-1$
$7$ $[7, 7, -w - 3]$ $1$
$9$ $[9, 3, 3]$ $-1$