# Properties

 Label 2.2.76.1-121.1-d Base field $$\Q(\sqrt{19})$$ Weight $[2, 2]$ Level norm $121$ Level $[121, 11, -11]$ Dimension $1$ CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{19})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 19$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2]$ Level: $[121, 11, -11]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $192$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -3w - 13]$ $-2$
3 $[3, 3, w + 4]$ $-1$
3 $[3, 3, w - 4]$ $-1$
5 $[5, 5, 2w + 9]$ $\phantom{-}1$
5 $[5, 5, -2w + 9]$ $\phantom{-}1$
17 $[17, 17, w + 6]$ $-2$
17 $[17, 17, -w + 6]$ $-2$
19 $[19, 19, w]$ $\phantom{-}0$
31 $[31, 31, 20w + 87]$ $\phantom{-}7$
31 $[31, 31, 7w + 30]$ $\phantom{-}7$
49 $[49, 7, -7]$ $-10$
59 $[59, 59, 6w + 25]$ $\phantom{-}5$
59 $[59, 59, -6w + 25]$ $\phantom{-}5$
61 $[61, 61, -9w - 40]$ $\phantom{-}12$
61 $[61, 61, 9w - 40]$ $\phantom{-}12$
67 $[67, 67, 2w - 3]$ $-7$
67 $[67, 67, -2w - 3]$ $-7$
71 $[71, 71, 3w + 10]$ $-3$
71 $[71, 71, 3w - 10]$ $-3$
73 $[73, 73, 27w + 118]$ $\phantom{-}4$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$121$ $[121, 11, -11]$ $-1$