Base field \(\Q(\sqrt{69}) \)
Generator \(w\), with minimal polynomial \(x^{2} - x - 17\); narrow class number \(2\) and class number \(1\).
Form
Weight: | $[2, 2]$ |
Level: | $[75, 15, 5w - 25]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $34$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
3 | $[3, 3, w - 5]$ | $-1$ |
4 | $[4, 2, 2]$ | $-3$ |
5 | $[5, 5, -w + 4]$ | $-1$ |
5 | $[5, 5, -w - 3]$ | $-1$ |
11 | $[11, 11, w + 2]$ | $\phantom{-}4$ |
11 | $[11, 11, -w + 3]$ | $\phantom{-}4$ |
13 | $[13, 13, w + 5]$ | $-2$ |
13 | $[13, 13, -w + 6]$ | $-2$ |
17 | $[17, 17, -w]$ | $-2$ |
17 | $[17, 17, w - 1]$ | $-2$ |
23 | $[23, 23, -3w + 13]$ | $\phantom{-}0$ |
31 | $[31, 31, 2w - 11]$ | $\phantom{-}0$ |
31 | $[31, 31, -5w + 24]$ | $\phantom{-}0$ |
49 | $[49, 7, -7]$ | $-14$ |
53 | $[53, 53, 2w - 5]$ | $\phantom{-}10$ |
53 | $[53, 53, -2w - 3]$ | $\phantom{-}10$ |
73 | $[73, 73, -w - 9]$ | $\phantom{-}10$ |
73 | $[73, 73, w - 10]$ | $\phantom{-}10$ |
83 | $[83, 83, -3w - 7]$ | $-12$ |
83 | $[83, 83, 3w - 10]$ | $-12$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$3$ | $[3, 3, w - 5]$ | $1$ |
$5$ | $[5, 5, -w + 4]$ | $1$ |
$5$ | $[5, 5, -w - 3]$ | $1$ |