Base field \(\Q(\sqrt{65}) \)
Generator \(w\), with minimal polynomial \(x^{2} - x - 16\); narrow class number \(2\) and class number \(2\).
Form
Weight: | $[2, 2]$ |
Level: | $[52, 26, 2w + 12]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $34$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, w]$ | $\phantom{-}1$ |
2 | $[2, 2, w + 1]$ | $\phantom{-}1$ |
5 | $[5, 5, w + 2]$ | $-1$ |
7 | $[7, 7, w + 1]$ | $\phantom{-}1$ |
7 | $[7, 7, w + 5]$ | $\phantom{-}1$ |
9 | $[9, 3, 3]$ | $\phantom{-}3$ |
13 | $[13, 13, w + 6]$ | $-1$ |
29 | $[29, 29, -2w + 7]$ | $\phantom{-}2$ |
29 | $[29, 29, 2w + 5]$ | $\phantom{-}2$ |
37 | $[37, 37, w + 9]$ | $\phantom{-}3$ |
37 | $[37, 37, w + 27]$ | $\phantom{-}3$ |
47 | $[47, 47, w + 10]$ | $\phantom{-}13$ |
47 | $[47, 47, w + 36]$ | $\phantom{-}13$ |
61 | $[61, 61, 2w - 3]$ | $-8$ |
61 | $[61, 61, -2w - 1]$ | $-8$ |
67 | $[67, 67, w + 23]$ | $-2$ |
67 | $[67, 67, w + 43]$ | $-2$ |
73 | $[73, 73, w + 24]$ | $-10$ |
73 | $[73, 73, w + 48]$ | $-10$ |
79 | $[79, 79, 2w - 13]$ | $-4$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, w]$ | $-1$ |
$2$ | $[2, 2, w + 1]$ | $-1$ |
$13$ | $[13, 13, w + 6]$ | $1$ |