# Properties

 Label 2.2.60.1-81.1-b Base field $$\Q(\sqrt{15})$$ Weight $[2, 2]$ Level norm $81$ Level $[81, 9, 9]$ Dimension $1$ CM yes Base change yes

# Related objects

## Base field $$\Q(\sqrt{15})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 15$$; narrow class number $$4$$ and class number $$2$$.

## Form

 Weight: $[2, 2]$ Level: $[81, 9, 9]$ Dimension: $1$ CM: yes Base change: yes Newspace dimension: $92$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}0$
3 $[3, 3, w]$ $\phantom{-}0$
5 $[5, 5, w]$ $\phantom{-}0$
7 $[7, 7, w + 1]$ $\phantom{-}1$
7 $[7, 7, w + 6]$ $\phantom{-}1$
11 $[11, 11, -w - 2]$ $\phantom{-}0$
11 $[11, 11, w - 2]$ $\phantom{-}0$
17 $[17, 17, w + 7]$ $\phantom{-}0$
17 $[17, 17, w + 10]$ $\phantom{-}0$
43 $[43, 43, w + 12]$ $-8$
43 $[43, 43, w + 31]$ $-8$
53 $[53, 53, w + 11]$ $\phantom{-}0$
53 $[53, 53, w + 42]$ $\phantom{-}0$
59 $[59, 59, 2w - 1]$ $\phantom{-}0$
59 $[59, 59, -2w - 1]$ $\phantom{-}0$
61 $[61, 61, 2w - 11]$ $-1$
61 $[61, 61, -2w - 11]$ $-1$
67 $[67, 67, w + 22]$ $-5$
67 $[67, 67, w + 45]$ $-5$
71 $[71, 71, 3w - 8]$ $\phantom{-}0$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$3$ $[3, 3, w]$ $-1$