Properties

Label 2.2.60.1-60.1-h
Base field \(\Q(\sqrt{15}) \)
Weight $[2, 2]$
Level norm $60$
Level $[60, 30, 2w]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{15}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 15\); narrow class number \(4\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[60, 30, 2w]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $16$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}0$
3 $[3, 3, w]$ $-1$
5 $[5, 5, w]$ $\phantom{-}1$
7 $[7, 7, w + 1]$ $-2$
7 $[7, 7, w + 6]$ $\phantom{-}4$
11 $[11, 11, -w - 2]$ $\phantom{-}6$
11 $[11, 11, w - 2]$ $\phantom{-}0$
17 $[17, 17, w + 7]$ $\phantom{-}0$
17 $[17, 17, w + 10]$ $\phantom{-}0$
43 $[43, 43, w + 12]$ $\phantom{-}4$
43 $[43, 43, w + 31]$ $\phantom{-}4$
53 $[53, 53, w + 11]$ $-6$
53 $[53, 53, w + 42]$ $-6$
59 $[59, 59, 2w - 1]$ $\phantom{-}12$
59 $[59, 59, -2w - 1]$ $\phantom{-}6$
61 $[61, 61, 2w - 11]$ $\phantom{-}8$
61 $[61, 61, -2w - 11]$ $-4$
67 $[67, 67, w + 22]$ $\phantom{-}4$
67 $[67, 67, w + 45]$ $-8$
71 $[71, 71, 3w - 8]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w + 1]$ $-1$
$3$ $[3, 3, w]$ $1$
$5$ $[5, 5, w]$ $-1$