Base field \(\Q(\sqrt{15}) \)
Generator \(w\), with minimal polynomial \(x^{2} - 15\); narrow class number \(4\) and class number \(2\).
Form
Weight: | $[2, 2]$ |
Level: | $[20, 10, 2w]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $4$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, w + 1]$ | $\phantom{-}0$ |
3 | $[3, 3, w]$ | $\phantom{-}2$ |
5 | $[5, 5, w]$ | $-1$ |
7 | $[7, 7, w + 1]$ | $-2$ |
7 | $[7, 7, w + 6]$ | $-2$ |
11 | $[11, 11, -w - 2]$ | $\phantom{-}0$ |
11 | $[11, 11, w - 2]$ | $\phantom{-}0$ |
17 | $[17, 17, w + 7]$ | $-6$ |
17 | $[17, 17, w + 10]$ | $-6$ |
43 | $[43, 43, w + 12]$ | $\phantom{-}10$ |
43 | $[43, 43, w + 31]$ | $\phantom{-}10$ |
53 | $[53, 53, w + 11]$ | $-6$ |
53 | $[53, 53, w + 42]$ | $-6$ |
59 | $[59, 59, 2w - 1]$ | $-12$ |
59 | $[59, 59, -2w - 1]$ | $-12$ |
61 | $[61, 61, 2w - 11]$ | $\phantom{-}2$ |
61 | $[61, 61, -2w - 11]$ | $\phantom{-}2$ |
67 | $[67, 67, w + 22]$ | $-2$ |
67 | $[67, 67, w + 45]$ | $-2$ |
71 | $[71, 71, 3w - 8]$ | $\phantom{-}12$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, w + 1]$ | $-1$ |
$5$ | $[5, 5, w]$ | $1$ |