# Properties

 Base field $$\Q(\sqrt{15})$$ Weight [2, 2] Level norm 150 Level $[150, 30, -5w + 15]$ Label 2.2.60.1-150.1-d Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{15})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 15$$; narrow class number $$4$$ and class number $$2$$.

## Form

 Weight [2, 2] Level $[150, 30, -5w + 15]$ Label 2.2.60.1-150.1-d Dimension 1 Is CM no Is base change yes Parent newspace dimension 72

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}1$
3 $[3, 3, w]$ $\phantom{-}1$
5 $[5, 5, w]$ $\phantom{-}0$
7 $[7, 7, w + 1]$ $-2$
7 $[7, 7, w + 6]$ $-2$
11 $[11, 11, -w - 2]$ $\phantom{-}2$
11 $[11, 11, w - 2]$ $\phantom{-}2$
17 $[17, 17, w + 7]$ $-2$
17 $[17, 17, w + 10]$ $-2$
43 $[43, 43, w + 12]$ $\phantom{-}4$
43 $[43, 43, w + 31]$ $\phantom{-}4$
53 $[53, 53, w + 11]$ $-6$
53 $[53, 53, w + 42]$ $-6$
59 $[59, 59, 2w - 1]$ $\phantom{-}10$
59 $[59, 59, -2w - 1]$ $\phantom{-}10$
61 $[61, 61, 2w - 11]$ $\phantom{-}2$
61 $[61, 61, -2w - 11]$ $\phantom{-}2$
67 $[67, 67, w + 22]$ $\phantom{-}8$
67 $[67, 67, w + 45]$ $\phantom{-}8$
71 $[71, 71, 3w - 8]$ $\phantom{-}12$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $-1$
3 $[3, 3, w]$ $-1$
5 $[5, 5, w]$ $1$