Properties

Base field \(\Q(\sqrt{14}) \)
Weight [2, 2]
Level norm 10
Level $[10,10,-w + 2]$
Label 2.2.56.1-10.2-a
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{14}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 14\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[10,10,-w + 2]$
Label 2.2.56.1-10.2-a
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 4

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w - 4]$ $-1$
5 $[5, 5, -w + 3]$ $\phantom{-}3$
5 $[5, 5, w + 3]$ $-1$
7 $[7, 7, -2w - 7]$ $-1$
9 $[9, 3, 3]$ $\phantom{-}1$
11 $[11, 11, w + 5]$ $\phantom{-}0$
11 $[11, 11, -w + 5]$ $-3$
13 $[13, 13, -w - 1]$ $\phantom{-}2$
13 $[13, 13, -w + 1]$ $\phantom{-}5$
31 $[31, 31, 2w - 5]$ $\phantom{-}5$
31 $[31, 31, -2w - 5]$ $\phantom{-}2$
43 $[43, 43, 7w + 27]$ $\phantom{-}2$
43 $[43, 43, 3w + 13]$ $-10$
47 $[47, 47, 2w - 3]$ $\phantom{-}6$
47 $[47, 47, -2w - 3]$ $-6$
61 $[61, 61, 7w + 25]$ $\phantom{-}8$
61 $[61, 61, -5w - 17]$ $\phantom{-}8$
67 $[67, 67, -w - 9]$ $\phantom{-}11$
67 $[67, 67, w - 9]$ $-1$
101 $[101, 101, 3w - 5]$ $-12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2,2,w - 4]$ $1$
5 $[5,5,w + 3]$ $1$