# Properties

 Base field $$\Q(\sqrt{11})$$ Weight [2, 2] Level norm 441 Level $[441, 21, 21]$ Label 2.2.44.1-441.1-k Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{11})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 11$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[441, 21, 21]$ Label 2.2.44.1-441.1-k Dimension 1 Is CM no Is base change yes Parent newspace dimension 170

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 3]$ $-1$
5 $[5, 5, w - 4]$ $-2$
5 $[5, 5, -w - 4]$ $-2$
7 $[7, 7, w + 2]$ $-1$
7 $[7, 7, w - 2]$ $-1$
9 $[9, 3, 3]$ $\phantom{-}1$
11 $[11, 11, -w]$ $\phantom{-}4$
19 $[19, 19, 2w - 5]$ $\phantom{-}4$
19 $[19, 19, -2w - 5]$ $\phantom{-}4$
37 $[37, 37, 2w - 9]$ $\phantom{-}6$
37 $[37, 37, -2w - 9]$ $\phantom{-}6$
43 $[43, 43, 2w - 1]$ $-4$
43 $[43, 43, -2w - 1]$ $-4$
53 $[53, 53, -w - 8]$ $\phantom{-}6$
53 $[53, 53, w - 8]$ $\phantom{-}6$
79 $[79, 79, 5w - 14]$ $-16$
79 $[79, 79, 8w - 25]$ $-16$
83 $[83, 83, -3w - 4]$ $-12$
83 $[83, 83, 3w - 4]$ $-12$
89 $[89, 89, -w - 10]$ $-14$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
7 $[7, 7, w + 2]$ $1$
7 $[7, 7, w - 2]$ $1$
9 $[9, 3, 3]$ $-1$