Base field \(\Q(\sqrt{11}) \)
Generator \(w\), with minimal polynomial \(x^{2} - 11\); narrow class number \(2\) and class number \(1\).
Form
Weight: | $[2, 2]$ |
Level: | $[338, 26, 13w - 39]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $96$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, -w + 3]$ | $\phantom{-}1$ |
5 | $[5, 5, w - 4]$ | $-1$ |
5 | $[5, 5, -w - 4]$ | $-1$ |
7 | $[7, 7, w + 2]$ | $\phantom{-}1$ |
7 | $[7, 7, w - 2]$ | $\phantom{-}1$ |
9 | $[9, 3, 3]$ | $\phantom{-}3$ |
11 | $[11, 11, -w]$ | $-2$ |
19 | $[19, 19, 2w - 5]$ | $\phantom{-}6$ |
19 | $[19, 19, -2w - 5]$ | $\phantom{-}6$ |
37 | $[37, 37, 2w - 9]$ | $\phantom{-}3$ |
37 | $[37, 37, -2w - 9]$ | $\phantom{-}3$ |
43 | $[43, 43, 2w - 1]$ | $-5$ |
43 | $[43, 43, -2w - 1]$ | $-5$ |
53 | $[53, 53, -w - 8]$ | $\phantom{-}12$ |
53 | $[53, 53, w - 8]$ | $\phantom{-}12$ |
79 | $[79, 79, 5w - 14]$ | $-4$ |
79 | $[79, 79, 8w - 25]$ | $-4$ |
83 | $[83, 83, -3w - 4]$ | $\phantom{-}0$ |
83 | $[83, 83, 3w - 4]$ | $\phantom{-}0$ |
89 | $[89, 89, -w - 10]$ | $\phantom{-}6$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, -w + 3]$ | $-1$ |
$169$ | $[169, 13, -13]$ | $-1$ |