Properties

Label 2.2.41.1-16.4-a
Base field \(\Q(\sqrt{41}) \)
Weight $[2, 2]$
Level norm $16$
Level $[16, 16, 5 w - 18]$
Dimension $1$
CM no
Base change no

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{41}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 10\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[16, 16, 5 w - 18]$
Dimension: $1$
CM: no
Base change: no
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w - 4]$ $\phantom{-}0$
2 $[2, 2, -w - 3]$ $\phantom{-}1$
5 $[5, 5, -2 w - 5]$ $\phantom{-}0$
5 $[5, 5, -2 w + 7]$ $\phantom{-}4$
9 $[9, 3, 3]$ $\phantom{-}4$
23 $[23, 23, 2 w - 9]$ $-8$
23 $[23, 23, -2 w - 7]$ $-4$
31 $[31, 31, -6 w - 17]$ $\phantom{-}0$
31 $[31, 31, 6 w - 23]$ $\phantom{-}4$
37 $[37, 37, 2 w - 3]$ $\phantom{-}0$
37 $[37, 37, -2 w - 1]$ $-4$
41 $[41, 41, 2 w - 1]$ $-6$
43 $[43, 43, -4 w - 9]$ $\phantom{-}8$
43 $[43, 43, 4 w - 13]$ $\phantom{-}4$
49 $[49, 7, -7]$ $-8$
59 $[59, 59, 2 w - 11]$ $-8$
59 $[59, 59, -2 w - 9]$ $-4$
61 $[61, 61, -4 w + 17]$ $\phantom{-}2$
61 $[61, 61, 4 w + 13]$ $\phantom{-}2$
73 $[73, 73, 8 w + 23]$ $\phantom{-}8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w - 4]$ $1$