Base field \(\Q(\sqrt{37}) \)
Generator \(w\), with minimal polynomial \(x^{2} - x - 9\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2]$ |
Level: | $[676, 26, -26]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $209$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
3 | $[3, 3, -w + 3]$ | $-3$ |
3 | $[3, 3, -w - 2]$ | $-3$ |
4 | $[4, 2, 2]$ | $\phantom{-}1$ |
7 | $[7, 7, w + 1]$ | $\phantom{-}1$ |
7 | $[7, 7, -w + 2]$ | $\phantom{-}1$ |
11 | $[11, 11, w + 4]$ | $-2$ |
11 | $[11, 11, -w + 5]$ | $-2$ |
25 | $[25, 5, 5]$ | $-9$ |
37 | $[37, 37, 2w - 1]$ | $\phantom{-}3$ |
41 | $[41, 41, 3w - 8]$ | $\phantom{-}0$ |
41 | $[41, 41, 3w + 5]$ | $\phantom{-}0$ |
47 | $[47, 47, -w - 7]$ | $\phantom{-}13$ |
47 | $[47, 47, w - 8]$ | $\phantom{-}13$ |
53 | $[53, 53, -3w - 4]$ | $\phantom{-}12$ |
53 | $[53, 53, 3w - 7]$ | $\phantom{-}12$ |
67 | $[67, 67, 4w - 11]$ | $-2$ |
67 | $[67, 67, 4w + 7]$ | $-2$ |
71 | $[71, 71, 3w - 5]$ | $-5$ |
71 | $[71, 71, -3w - 2]$ | $-5$ |
73 | $[73, 73, -3w - 11]$ | $-10$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$4$ | $[4, 2, 2]$ | $-1$ |
$169$ | $[169, 13, -13]$ | $-1$ |