Properties

Label 2.2.37.1-676.1-b
Base field \(\Q(\sqrt{37}) \)
Weight $[2, 2]$
Level norm $676$
Level $[676, 26, -26]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{37}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 9\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[676, 26, -26]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $209$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w + 3]$ $-3$
3 $[3, 3, -w - 2]$ $-3$
4 $[4, 2, 2]$ $\phantom{-}1$
7 $[7, 7, w + 1]$ $\phantom{-}1$
7 $[7, 7, -w + 2]$ $\phantom{-}1$
11 $[11, 11, w + 4]$ $-2$
11 $[11, 11, -w + 5]$ $-2$
25 $[25, 5, 5]$ $-9$
37 $[37, 37, 2w - 1]$ $\phantom{-}3$
41 $[41, 41, 3w - 8]$ $\phantom{-}0$
41 $[41, 41, 3w + 5]$ $\phantom{-}0$
47 $[47, 47, -w - 7]$ $\phantom{-}13$
47 $[47, 47, w - 8]$ $\phantom{-}13$
53 $[53, 53, -3w - 4]$ $\phantom{-}12$
53 $[53, 53, 3w - 7]$ $\phantom{-}12$
67 $[67, 67, 4w - 11]$ $-2$
67 $[67, 67, 4w + 7]$ $-2$
71 $[71, 71, 3w - 5]$ $-5$
71 $[71, 71, -3w - 2]$ $-5$
73 $[73, 73, -3w - 11]$ $-10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, 2]$ $-1$
$169$ $[169, 13, -13]$ $-1$