Properties

Base field \(\Q(\sqrt{37}) \)
Weight [2, 2]
Level norm 441
Level $[441, 21, 21]$
Label 2.2.37.1-441.1-i
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{37}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 9\); narrow class number \(1\) and class number \(1\).

Form

Weight [2, 2]
Level $[441, 21, 21]$
Label 2.2.37.1-441.1-i
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 63

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
3 $[3, 3, -w + 3]$ $\phantom{-}1$
3 $[3, 3, -w - 2]$ $\phantom{-}1$
4 $[4, 2, 2]$ $-3$
7 $[7, 7, w + 1]$ $-1$
7 $[7, 7, -w + 2]$ $-1$
11 $[11, 11, w + 4]$ $\phantom{-}4$
11 $[11, 11, -w + 5]$ $\phantom{-}4$
25 $[25, 5, 5]$ $-6$
37 $[37, 37, 2w - 1]$ $\phantom{-}6$
41 $[41, 41, 3w - 8]$ $\phantom{-}2$
41 $[41, 41, 3w + 5]$ $\phantom{-}2$
47 $[47, 47, -w - 7]$ $\phantom{-}0$
47 $[47, 47, w - 8]$ $\phantom{-}0$
53 $[53, 53, -3w - 4]$ $\phantom{-}6$
53 $[53, 53, 3w - 7]$ $\phantom{-}6$
67 $[67, 67, 4w - 11]$ $\phantom{-}4$
67 $[67, 67, 4w + 7]$ $\phantom{-}4$
71 $[71, 71, 3w - 5]$ $\phantom{-}0$
71 $[71, 71, -3w - 2]$ $\phantom{-}0$
73 $[73, 73, -3w - 11]$ $-6$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
3 $[3, 3, -w + 3]$ $-1$
3 $[3, 3, -w - 2]$ $-1$
7 $[7, 7, w + 1]$ $1$
7 $[7, 7, -w + 2]$ $1$