Properties

 Label 2.2.364.1-4.1-c Base field $$\Q(\sqrt{91})$$ Weight $[2, 2]$ Level norm $4$ Level $[4, 2, 2]$ Dimension $1$ CM no Base change no

Related objects

Base field $$\Q(\sqrt{91})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 91$$; narrow class number $$4$$ and class number $$2$$.

Form

 Weight: $[2, 2]$ Level: $[4, 2, 2]$ Dimension: $1$ CM: no Base change: no Newspace dimension: $24$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}0$
3 $[3, 3, -2w + 19]$ $\phantom{-}2$
3 $[3, 3, -2w - 19]$ $\phantom{-}0$
5 $[5, 5, w + 1]$ $\phantom{-}3$
5 $[5, 5, w + 4]$ $-1$
7 $[7, 7, w]$ $-2$
11 $[11, 11, w + 5]$ $-4$
11 $[11, 11, w + 6]$ $\phantom{-}2$
13 $[13, 13, w]$ $\phantom{-}2$
29 $[29, 29, -5w + 48]$ $-1$
29 $[29, 29, -5w - 48]$ $\phantom{-}3$
41 $[41, 41, w + 3]$ $-6$
41 $[41, 41, w + 38]$ $-2$
53 $[53, 53, -w - 12]$ $-9$
53 $[53, 53, w - 12]$ $-1$
67 $[67, 67, w + 15]$ $\phantom{-}0$
67 $[67, 67, w + 52]$ $\phantom{-}4$
71 $[71, 71, w + 34]$ $\phantom{-}8$
71 $[71, 71, w + 37]$ $\phantom{-}10$
73 $[73, 73, w + 23]$ $\phantom{-}3$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w + 1]$ $-1$