Properties

Label 2.2.296.1-32.1-b
Base field \(\Q(\sqrt{74}) \)
Weight $[2, 2]$
Level norm $32$
Level $[32, 8, 4w]$
Dimension $1$
CM yes
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{74}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 74\); narrow class number \(2\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[32, 8, 4w]$
Dimension: $1$
CM: yes
Base change: yes
Newspace dimension: $256$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}0$
5 $[5, 5, w + 2]$ $\phantom{-}2$
5 $[5, 5, w + 3]$ $\phantom{-}2$
7 $[7, 7, w + 9]$ $\phantom{-}0$
7 $[7, 7, -w + 9]$ $\phantom{-}0$
9 $[9, 3, 3]$ $-6$
13 $[13, 13, w + 3]$ $-6$
13 $[13, 13, w + 10]$ $-6$
19 $[19, 19, w + 6]$ $\phantom{-}0$
19 $[19, 19, w + 13]$ $\phantom{-}0$
29 $[29, 29, w + 4]$ $\phantom{-}10$
29 $[29, 29, w + 25]$ $\phantom{-}10$
37 $[37, 37, w]$ $\phantom{-}2$
41 $[41, 41, 3w - 25]$ $\phantom{-}10$
41 $[41, 41, 3w + 25]$ $\phantom{-}10$
43 $[43, 43, w + 17]$ $\phantom{-}0$
43 $[43, 43, w + 26]$ $\phantom{-}0$
47 $[47, 47, -w - 11]$ $\phantom{-}0$
47 $[47, 47, w - 11]$ $\phantom{-}0$
59 $[59, 59, w + 29]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w]$ $-1$