Properties

Label 2.2.29.1-676.1-f
Base field \(\Q(\sqrt{29}) \)
Weight $[2, 2]$
Level norm $676$
Level $[676, 26, 26]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{29}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 7\); narrow class number \(1\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[676, 26, 26]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $109$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, 2]$ $\phantom{-}1$
5 $[5, 5, w + 1]$ $-1$
5 $[5, 5, w - 2]$ $-1$
7 $[7, 7, w]$ $\phantom{-}1$
7 $[7, 7, -w + 1]$ $\phantom{-}1$
9 $[9, 3, 3]$ $\phantom{-}3$
13 $[13, 13, w + 4]$ $-1$
13 $[13, 13, w - 5]$ $-1$
23 $[23, 23, -w - 5]$ $-4$
23 $[23, 23, w - 6]$ $-4$
29 $[29, 29, 2w - 1]$ $\phantom{-}2$
53 $[53, 53, 3w - 5]$ $\phantom{-}12$
53 $[53, 53, -3w - 2]$ $\phantom{-}12$
59 $[59, 59, -3w - 1]$ $-10$
59 $[59, 59, 3w - 4]$ $-10$
67 $[67, 67, 3w - 13]$ $-2$
67 $[67, 67, -3w - 10]$ $-2$
71 $[71, 71, 2w - 11]$ $-5$
71 $[71, 71, -2w - 9]$ $-5$
83 $[83, 83, -w - 9]$ $\phantom{-}0$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$4$ $[4, 2, 2]$ $-1$
$13$ $[13, 13, w + 4]$ $1$
$13$ $[13, 13, w - 5]$ $1$