Base field \(\Q(\sqrt{29}) \)
Generator \(w\), with minimal polynomial \(x^{2} - x - 7\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2]$ |
Level: | $[676, 26, 26]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $109$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
4 | $[4, 2, 2]$ | $\phantom{-}1$ |
5 | $[5, 5, w + 1]$ | $-1$ |
5 | $[5, 5, w - 2]$ | $-1$ |
7 | $[7, 7, w]$ | $\phantom{-}1$ |
7 | $[7, 7, -w + 1]$ | $\phantom{-}1$ |
9 | $[9, 3, 3]$ | $\phantom{-}3$ |
13 | $[13, 13, w + 4]$ | $-1$ |
13 | $[13, 13, w - 5]$ | $-1$ |
23 | $[23, 23, -w - 5]$ | $-4$ |
23 | $[23, 23, w - 6]$ | $-4$ |
29 | $[29, 29, 2w - 1]$ | $\phantom{-}2$ |
53 | $[53, 53, 3w - 5]$ | $\phantom{-}12$ |
53 | $[53, 53, -3w - 2]$ | $\phantom{-}12$ |
59 | $[59, 59, -3w - 1]$ | $-10$ |
59 | $[59, 59, 3w - 4]$ | $-10$ |
67 | $[67, 67, 3w - 13]$ | $-2$ |
67 | $[67, 67, -3w - 10]$ | $-2$ |
71 | $[71, 71, 2w - 11]$ | $-5$ |
71 | $[71, 71, -2w - 9]$ | $-5$ |
83 | $[83, 83, -w - 9]$ | $\phantom{-}0$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$4$ | $[4, 2, 2]$ | $-1$ |
$13$ | $[13, 13, w + 4]$ | $1$ |
$13$ | $[13, 13, w - 5]$ | $1$ |