# Properties

 Base field $$\Q(\sqrt{29})$$ Weight [2, 2] Level norm 576 Level $[576, 24, 24]$ Label 2.2.29.1-576.1-i Dimension 1 CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{29})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 7$$; narrow class number $$1$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[576, 24, 24]$ Label 2.2.29.1-576.1-i Dimension 1 Is CM no Is base change yes Parent newspace dimension 90

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
4 $[4, 2, 2]$ $\phantom{-}0$
5 $[5, 5, w + 1]$ $-2$
5 $[5, 5, w - 2]$ $-2$
7 $[7, 7, w]$ $\phantom{-}0$
7 $[7, 7, -w + 1]$ $\phantom{-}0$
9 $[9, 3, 3]$ $\phantom{-}1$
13 $[13, 13, w + 4]$ $-2$
13 $[13, 13, w - 5]$ $-2$
23 $[23, 23, -w - 5]$ $-8$
23 $[23, 23, w - 6]$ $-8$
29 $[29, 29, 2w - 1]$ $\phantom{-}6$
53 $[53, 53, 3w - 5]$ $-2$
53 $[53, 53, -3w - 2]$ $-2$
59 $[59, 59, -3w - 1]$ $\phantom{-}4$
59 $[59, 59, 3w - 4]$ $\phantom{-}4$
67 $[67, 67, 3w - 13]$ $-4$
67 $[67, 67, -3w - 10]$ $-4$
71 $[71, 71, 2w - 11]$ $\phantom{-}8$
71 $[71, 71, -2w - 9]$ $\phantom{-}8$
83 $[83, 83, -w - 9]$ $-4$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
4 $[4, 2, 2]$ $-1$
9 $[9, 3, 3]$ $-1$