Base field \(\Q(\sqrt{29}) \)
Generator \(w\), with minimal polynomial \(x^2 - x - 7\); narrow class number \(1\) and class number \(1\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[1, 1, 1]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | yes |
| Newspace dimension: | $1$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 4 | $[4, 2, 2]$ | $-1$ |
| 5 | $[5, 5, w + 1]$ | $-3$ |
| 5 | $[5, 5, w - 2]$ | $-3$ |
| 7 | $[7, 7, w]$ | $\phantom{-}2$ |
| 7 | $[7, 7, -w + 1]$ | $\phantom{-}2$ |
| 9 | $[9, 3, 3]$ | $\phantom{-}1$ |
| 13 | $[13, 13, w + 4]$ | $-1$ |
| 13 | $[13, 13, w - 5]$ | $-1$ |
| 23 | $[23, 23, -w - 5]$ | $\phantom{-}6$ |
| 23 | $[23, 23, w - 6]$ | $\phantom{-}6$ |
| 29 | $[29, 29, 2 w - 1]$ | $-6$ |
| 53 | $[53, 53, 3 w - 5]$ | $-9$ |
| 53 | $[53, 53, -3 w - 2]$ | $-9$ |
| 59 | $[59, 59, -3 w - 1]$ | $\phantom{-}6$ |
| 59 | $[59, 59, 3 w - 4]$ | $\phantom{-}6$ |
| 67 | $[67, 67, 3 w - 13]$ | $\phantom{-}8$ |
| 67 | $[67, 67, -3 w - 10]$ | $\phantom{-}8$ |
| 71 | $[71, 71, 2 w - 11]$ | $\phantom{-}0$ |
| 71 | $[71, 71, -2 w - 9]$ | $\phantom{-}0$ |
| 83 | $[83, 83, -w - 9]$ | $-6$ |
Atkin-Lehner eigenvalues
This form has no Atkin-Lehner eigenvalues since the level is \((1)\).