Properties

Label 2.2.28.1-56.1-d
Base field \(\Q(\sqrt{7}) \)
Weight $[2, 2]$
Level norm $56$
Level $[56, 28, -6w + 14]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{7}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 7\); narrow class number \(2\) and class number \(1\).

Form

Weight: $[2, 2]$
Level: $[56, 28, -6w + 14]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $4$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w - 3]$ $\phantom{-}0$
3 $[3, 3, w - 2]$ $\phantom{-}0$
3 $[3, 3, w + 2]$ $\phantom{-}0$
7 $[7, 7, w]$ $\phantom{-}1$
19 $[19, 19, 2w - 3]$ $-8$
19 $[19, 19, 2w + 3]$ $-8$
25 $[25, 5, 5]$ $-6$
29 $[29, 29, -w - 6]$ $\phantom{-}6$
29 $[29, 29, w - 6]$ $\phantom{-}6$
31 $[31, 31, 4w + 9]$ $-8$
31 $[31, 31, -4w + 9]$ $-8$
37 $[37, 37, -3w + 10]$ $-2$
37 $[37, 37, -6w + 17]$ $-2$
47 $[47, 47, -3w - 4]$ $\phantom{-}8$
47 $[47, 47, 3w - 4]$ $\phantom{-}8$
53 $[53, 53, 2w - 9]$ $\phantom{-}6$
53 $[53, 53, 2w + 9]$ $\phantom{-}6$
59 $[59, 59, 3w - 2]$ $\phantom{-}0$
59 $[59, 59, -3w - 2]$ $\phantom{-}0$
83 $[83, 83, -6w - 13]$ $-8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w - 3]$ $1$
$7$ $[7, 7, w]$ $-1$