Properties

 Label 2.2.273.1-4.1-c Base field $$\Q(\sqrt{273})$$ Weight $[2, 2]$ Level norm $4$ Level $[4, 2, 2]$ Dimension $1$ CM no Base change yes

Related objects

Base field $$\Q(\sqrt{273})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 68$$; narrow class number $$4$$ and class number $$2$$.

Form

 Weight: $[2, 2]$ Level: $[4, 2, 2]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $40$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}1$
2 $[2, 2, w + 1]$ $\phantom{-}1$
3 $[3, 3, -4w + 35]$ $\phantom{-}3$
7 $[7, 7, w + 3]$ $-5$
11 $[11, 11, w + 1]$ $\phantom{-}0$
11 $[11, 11, w + 9]$ $\phantom{-}0$
13 $[13, 13, w + 6]$ $\phantom{-}2$
17 $[17, 17, -2w + 17]$ $\phantom{-}3$
17 $[17, 17, -2w - 15]$ $\phantom{-}3$
19 $[19, 19, w + 5]$ $\phantom{-}2$
19 $[19, 19, w + 13]$ $\phantom{-}2$
25 $[25, 5, -5]$ $\phantom{-}7$
31 $[31, 31, w + 2]$ $-8$
31 $[31, 31, w + 28]$ $-8$
43 $[43, 43, -38w + 333]$ $-11$
43 $[43, 43, 6w - 53]$ $-11$
71 $[71, 71, w + 14]$ $\phantom{-}9$
71 $[71, 71, w + 56]$ $\phantom{-}9$
73 $[73, 73, w + 22]$ $-2$
73 $[73, 73, w + 50]$ $-2$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w]$ $-1$
$2$ $[2, 2, w + 1]$ $-1$