# Properties

 Label 2.2.24.1-870.2-g Base field $$\Q(\sqrt{6})$$ Weight $[2, 2]$ Level norm $870$ Level $[870, 870, -19w - 36]$ Dimension $1$ CM no Base change no

# Related objects

## Base field $$\Q(\sqrt{6})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 6$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2]$ Level: $[870, 870, -19w - 36]$ Dimension: $1$ CM: no Base change: no Newspace dimension: $54$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 2]$ $\phantom{-}1$
3 $[3, 3, w - 3]$ $\phantom{-}1$
5 $[5, 5, w + 1]$ $-2$
5 $[5, 5, w - 1]$ $\phantom{-}1$
19 $[19, 19, w + 5]$ $\phantom{-}0$
19 $[19, 19, -w + 5]$ $\phantom{-}2$
23 $[23, 23, -2w + 1]$ $-4$
23 $[23, 23, -2w - 1]$ $-8$
29 $[29, 29, -3w + 5]$ $-1$
29 $[29, 29, -3w - 5]$ $-8$
43 $[43, 43, -w - 7]$ $-8$
43 $[43, 43, w - 7]$ $-6$
47 $[47, 47, 4w - 7]$ $\phantom{-}0$
47 $[47, 47, 6w - 13]$ $-6$
49 $[49, 7, -7]$ $-2$
53 $[53, 53, -3w - 1]$ $-6$
53 $[53, 53, 3w - 1]$ $-2$
67 $[67, 67, -7w + 19]$ $\phantom{-}8$
67 $[67, 67, -3w + 11]$ $-8$
71 $[71, 71, -4w - 5]$ $\phantom{-}6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w + 2]$ $-1$
$3$ $[3, 3, w - 3]$ $-1$
$5$ $[5, 5, w - 1]$ $-1$
$29$ $[29, 29, -3w + 5]$ $1$