# Properties

 Base field $$\Q(\sqrt{6})$$ Weight [2, 2] Level norm 256 Level $[256, 16, 16]$ Label 2.2.24.1-256.1-c Dimension 1 CM yes Base change no

# Related objects

## Base field $$\Q(\sqrt{6})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 6$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight [2, 2] Level $[256, 16, 16]$ Label 2.2.24.1-256.1-c Dimension 1 Is CM yes Is base change no Parent newspace dimension 24

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 2]$ $\phantom{-}0$
3 $[3, 3, w - 3]$ $\phantom{-}0$
5 $[5, 5, w + 1]$ $\phantom{-}0$
5 $[5, 5, w - 1]$ $\phantom{-}0$
19 $[19, 19, w + 5]$ $\phantom{-}8$
19 $[19, 19, -w + 5]$ $-8$
23 $[23, 23, -2w + 1]$ $\phantom{-}0$
23 $[23, 23, -2w - 1]$ $\phantom{-}0$
29 $[29, 29, -3w + 5]$ $\phantom{-}0$
29 $[29, 29, -3w - 5]$ $\phantom{-}0$
43 $[43, 43, -w - 7]$ $-8$
43 $[43, 43, w - 7]$ $\phantom{-}8$
47 $[47, 47, 4w - 7]$ $\phantom{-}0$
47 $[47, 47, 6w - 13]$ $\phantom{-}0$
49 $[49, 7, -7]$ $-2$
53 $[53, 53, -3w - 1]$ $\phantom{-}0$
53 $[53, 53, 3w - 1]$ $\phantom{-}0$
67 $[67, 67, -7w + 19]$ $\phantom{-}16$
67 $[67, 67, -3w + 11]$ $-16$
71 $[71, 71, -4w - 5]$ $\phantom{-}0$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 2]$ $-1$