# Properties

 Label 2.2.24.1-256.1-a Base field $$\Q(\sqrt{6})$$ Weight $[2, 2]$ Level norm $256$ Level $[256, 16, 16]$ Dimension $1$ CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{6})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 6$$; narrow class number $$2$$ and class number $$1$$.

## Form

 Weight: $[2, 2]$ Level: $[256, 16, 16]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $24$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 2]$ $\phantom{-}0$
3 $[3, 3, w - 3]$ $-2$
5 $[5, 5, w + 1]$ $\phantom{-}2$
5 $[5, 5, w - 1]$ $\phantom{-}2$
19 $[19, 19, w + 5]$ $-2$
19 $[19, 19, -w + 5]$ $-2$
23 $[23, 23, -2w + 1]$ $-4$
23 $[23, 23, -2w - 1]$ $-4$
29 $[29, 29, -3w + 5]$ $-6$
29 $[29, 29, -3w - 5]$ $-6$
43 $[43, 43, -w - 7]$ $-6$
43 $[43, 43, w - 7]$ $-6$
47 $[47, 47, 4w - 7]$ $\phantom{-}8$
47 $[47, 47, 6w - 13]$ $\phantom{-}8$
49 $[49, 7, -7]$ $\phantom{-}2$
53 $[53, 53, -3w - 1]$ $-6$
53 $[53, 53, 3w - 1]$ $-6$
67 $[67, 67, -7w + 19]$ $-10$
67 $[67, 67, -3w + 11]$ $-10$
71 $[71, 71, -4w - 5]$ $-12$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w + 2]$ $-1$