Properties

 Base field $$\Q(\sqrt{217})$$ Weight [2, 2] Level norm 28 Level $[28, 14, 996w - 7834]$ Label 2.2.217.1-28.1-h Dimension 1 CM no Base change yes

Learn more about

Base field $$\Q(\sqrt{217})$$

Generator $$w$$, with minimal polynomial $$x^{2} - x - 54$$; narrow class number $$2$$ and class number $$1$$.

Form

 Weight [2, 2] Level $[28, 14, 996w - 7834]$ Label 2.2.217.1-28.1-h Dimension 1 Is CM no Is base change yes Parent newspace dimension 58

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 8]$ $-1$
2 $[2, 2, w + 7]$ $-1$
3 $[3, 3, -52w - 357]$ $-2$
3 $[3, 3, -52w + 409]$ $-2$
7 $[7, 7, 498w - 3917]$ $\phantom{-}1$
13 $[13, 13, 22w - 173]$ $-4$
13 $[13, 13, 22w + 151]$ $-4$
17 $[17, 17, -6w - 41]$ $\phantom{-}6$
17 $[17, 17, -6w + 47]$ $\phantom{-}6$
25 $[25, 5, -5]$ $-10$
31 $[31, 31, 1048w - 8243]$ $-4$
61 $[61, 61, 602w - 4735]$ $\phantom{-}8$
61 $[61, 61, 602w + 4133]$ $\phantom{-}8$
67 $[67, 67, -186w - 1277]$ $-4$
67 $[67, 67, -186w + 1463]$ $-4$
71 $[71, 71, 290w - 2281]$ $\phantom{-}0$
71 $[71, 71, 290w + 1991]$ $\phantom{-}0$
73 $[73, 73, 2w - 13]$ $\phantom{-}2$
73 $[73, 73, -2w - 11]$ $\phantom{-}2$
83 $[83, 83, -36w - 247]$ $-6$
 Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -w + 8]$ $1$
2 $[2, 2, w + 7]$ $1$
7 $[7, 7, 498w - 3917]$ $-1$