Base field \(\Q(\sqrt{21}) \)
Generator \(w\), with minimal polynomial \(x^2 - x - 5\); narrow class number \(2\) and class number \(1\).
Form
| Weight: | $[2, 2]$ |
| Level: | $[225, 15, 15]$ |
| Dimension: | $1$ |
| CM: | no |
| Base change: | no |
| Newspace dimension: | $16$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
| Norm | Prime | Eigenvalue |
|---|---|---|
| 3 | $[3, 3, w + 1]$ | $\phantom{-}0$ |
| 4 | $[4, 2, 2]$ | $\phantom{-}3$ |
| 5 | $[5, 5, w]$ | $-1$ |
| 5 | $[5, 5, w - 1]$ | $\phantom{-}1$ |
| 7 | $[7, 7, -w - 3]$ | $\phantom{-}0$ |
| 17 | $[17, 17, -2 w + 3]$ | $\phantom{-}2$ |
| 17 | $[17, 17, -2 w - 1]$ | $-2$ |
| 37 | $[37, 37, w + 6]$ | $\phantom{-}10$ |
| 37 | $[37, 37, -w + 7]$ | $\phantom{-}10$ |
| 41 | $[41, 41, 3 w + 1]$ | $\phantom{-}10$ |
| 41 | $[41, 41, -3 w + 4]$ | $-10$ |
| 43 | $[43, 43, 3 w + 8]$ | $-4$ |
| 43 | $[43, 43, 3 w - 11]$ | $-4$ |
| 47 | $[47, 47, 3 w - 2]$ | $\phantom{-}8$ |
| 47 | $[47, 47, 3 w - 1]$ | $-8$ |
| 59 | $[59, 59, -5 w - 6]$ | $-4$ |
| 59 | $[59, 59, -4 w - 3]$ | $\phantom{-}4$ |
| 67 | $[67, 67, -w - 8]$ | $\phantom{-}12$ |
| 67 | $[67, 67, w - 9]$ | $\phantom{-}12$ |
| 79 | $[79, 79, 2 w - 11]$ | $\phantom{-}0$ |
Atkin-Lehner eigenvalues
| Norm | Prime | Eigenvalue |
|---|---|---|
| $3$ | $[3, 3, w + 1]$ | $-1$ |
| $5$ | $[5, 5, w]$ | $1$ |
| $5$ | $[5, 5, w - 1]$ | $-1$ |