Properties

Base field \(\Q(\sqrt{209}) \)
Weight [2, 2]
Level norm 2
Level $[2, 2, -11w - 74]$
Label 2.2.209.1-2.1-c
Dimension 1
CM no
Base change no

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{209}) \)

Generator \(w\), with minimal polynomial \(x^{2} - x - 52\); narrow class number \(2\) and class number \(1\).

Form

Weight [2, 2]
Level $[2, 2, -11w - 74]$
Label 2.2.209.1-2.1-c
Dimension 1
Is CM no
Is base change no
Parent newspace dimension 4

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -11w - 74]$ $\phantom{-}1$
2 $[2, 2, -11w + 85]$ $-2$
5 $[5, 5, 4w - 31]$ $\phantom{-}3$
5 $[5, 5, -4w - 27]$ $-2$
9 $[9, 3, 3]$ $\phantom{-}1$
11 $[11, 11, -70w - 471]$ $-3$
13 $[13, 13, -2w - 13]$ $-4$
13 $[13, 13, -2w + 15]$ $-4$
19 $[19, 19, 92w - 711]$ $-4$
23 $[23, 23, -26w + 201]$ $\phantom{-}1$
23 $[23, 23, -26w - 175]$ $\phantom{-}1$
29 $[29, 29, 18w - 139]$ $-6$
29 $[29, 29, 18w + 121]$ $\phantom{-}4$
41 $[41, 41, -10w - 67]$ $-10$
41 $[41, 41, 10w - 77]$ $\phantom{-}0$
47 $[47, 47, 2w - 17]$ $\phantom{-}7$
47 $[47, 47, 2w + 15]$ $-3$
49 $[49, 7, -7]$ $-11$
79 $[79, 79, 40w - 309]$ $\phantom{-}0$
79 $[79, 79, 40w + 269]$ $\phantom{-}10$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, -11w - 74]$ $-1$