Properties

Label 2.2.204.1-24.1-b
Base field \(\Q(\sqrt{51}) \)
Weight $[2, 2]$
Level norm $24$
Level $[24, 12, 2w + 6]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{51}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 51\); narrow class number \(4\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[24, 12, 2w + 6]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $96$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, -w + 7]$ $\phantom{-}0$
3 $[3, 3, w]$ $\phantom{-}1$
5 $[5, 5, w + 1]$ $-2$
5 $[5, 5, w + 4]$ $-2$
7 $[7, 7, w + 3]$ $\phantom{-}0$
7 $[7, 7, w + 4]$ $\phantom{-}0$
13 $[13, 13, w - 8]$ $-2$
13 $[13, 13, w + 8]$ $-2$
17 $[17, 17, w]$ $\phantom{-}2$
29 $[29, 29, w + 14]$ $\phantom{-}6$
29 $[29, 29, w + 15]$ $\phantom{-}6$
31 $[31, 31, w + 12]$ $-8$
31 $[31, 31, w + 19]$ $-8$
41 $[41, 41, w + 16]$ $-6$
41 $[41, 41, w + 25]$ $-6$
47 $[47, 47, -w - 2]$ $\phantom{-}0$
47 $[47, 47, w - 2]$ $\phantom{-}0$
59 $[59, 59, 3w - 20]$ $-4$
59 $[59, 59, 10w - 71]$ $-4$
79 $[79, 79, w + 29]$ $\phantom{-}8$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, -w + 7]$ $-1$
$3$ $[3, 3, w]$ $-1$