Base field \(\Q(\sqrt{17}) \)
Generator \(w\), with minimal polynomial \(x^{2} - x - 4\); narrow class number \(1\) and class number \(1\).
Form
Weight: | $[2, 2]$ |
Level: | $[128,64,6w - 8]$ |
Dimension: | $1$ |
CM: | no |
Base change: | no |
Newspace dimension: | $4$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, -w + 2]$ | $\phantom{-}0$ |
2 | $[2, 2, -w - 1]$ | $\phantom{-}1$ |
9 | $[9, 3, 3]$ | $\phantom{-}2$ |
13 | $[13, 13, -2w + 3]$ | $\phantom{-}6$ |
13 | $[13, 13, 2w + 1]$ | $\phantom{-}2$ |
17 | $[17, 17, -2w + 1]$ | $\phantom{-}2$ |
19 | $[19, 19, -2w + 7]$ | $-4$ |
19 | $[19, 19, 2w + 5]$ | $-8$ |
25 | $[25, 5, -5]$ | $-6$ |
43 | $[43, 43, 4w - 7]$ | $\phantom{-}8$ |
43 | $[43, 43, 4w + 3]$ | $\phantom{-}4$ |
47 | $[47, 47, -2w + 9]$ | $-8$ |
47 | $[47, 47, 2w + 7]$ | $-8$ |
49 | $[49, 7, -7]$ | $\phantom{-}2$ |
53 | $[53, 53, 4w - 13]$ | $\phantom{-}10$ |
53 | $[53, 53, 6w - 13]$ | $-2$ |
59 | $[59, 59, -4w - 1]$ | $\phantom{-}8$ |
59 | $[59, 59, 4w - 5]$ | $-12$ |
67 | $[67, 67, 4w - 3]$ | $\phantom{-}4$ |
67 | $[67, 67, 4w - 1]$ | $\phantom{-}0$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2,2,w + 1]$ | $-1$ |
$2$ | $[2,2,w - 2]$ | $-1$ |