Properties

Base field \(\Q(\sqrt{42}) \)
Weight [2, 2]
Level norm 24
Level $[24, 12, -2w + 12]$
Label 2.2.168.1-24.1-d
Dimension 1
CM no
Base change yes

Related objects

Downloads

Learn more about

Base field \(\Q(\sqrt{42}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 42\); narrow class number \(4\) and class number \(2\).

Form

Weight [2, 2]
Level $[24, 12, -2w + 12]$
Label 2.2.168.1-24.1-d
Dimension 1
Is CM no
Is base change yes
Parent newspace dimension 60

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w]$ $\phantom{-}0$
3 $[3, 3, w]$ $-1$
7 $[7, 7, w - 7]$ $\phantom{-}0$
11 $[11, 11, w + 3]$ $\phantom{-}4$
11 $[11, 11, w + 8]$ $\phantom{-}4$
13 $[13, 13, w + 4]$ $-2$
13 $[13, 13, w + 9]$ $-2$
17 $[17, 17, -w - 5]$ $\phantom{-}2$
17 $[17, 17, -w + 5]$ $\phantom{-}2$
19 $[19, 19, w + 2]$ $-4$
19 $[19, 19, w + 17]$ $-4$
25 $[25, 5, 5]$ $-6$
29 $[29, 29, w + 10]$ $\phantom{-}6$
29 $[29, 29, w + 19]$ $\phantom{-}6$
41 $[41, 41, -w - 1]$ $-6$
41 $[41, 41, w - 1]$ $-6$
47 $[47, 47, -2w + 11]$ $\phantom{-}0$
47 $[47, 47, 4w - 25]$ $\phantom{-}0$
53 $[53, 53, w + 25]$ $-2$
53 $[53, 53, w + 28]$ $-2$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
2 $[2, 2, w]$ $-1$
3 $[3, 3, w]$ $1$