Base field \(\Q(\sqrt{35}) \)
Generator \(w\), with minimal polynomial \(x^{2} - 35\); narrow class number \(4\) and class number \(2\).
Form
Weight: | $[2, 2]$ |
Level: | $[20, 10, 2w]$ |
Dimension: | $1$ |
CM: | no |
Base change: | yes |
Newspace dimension: | $20$ |
Hecke eigenvalues ($q$-expansion)
The Hecke eigenvalue field is $\Q$.
Norm | Prime | Eigenvalue |
---|---|---|
2 | $[2, 2, w + 1]$ | $\phantom{-}0$ |
5 | $[5, 5, w]$ | $-1$ |
7 | $[7, 7, w]$ | $-2$ |
9 | $[9, 3, 3]$ | $-2$ |
13 | $[13, 13, w + 3]$ | $\phantom{-}2$ |
13 | $[13, 13, w + 10]$ | $\phantom{-}2$ |
17 | $[17, 17, w + 1]$ | $-6$ |
17 | $[17, 17, w + 16]$ | $-6$ |
19 | $[19, 19, w + 4]$ | $\phantom{-}4$ |
19 | $[19, 19, -w + 4]$ | $\phantom{-}4$ |
23 | $[23, 23, w + 9]$ | $-6$ |
23 | $[23, 23, w + 14]$ | $-6$ |
29 | $[29, 29, -w - 8]$ | $\phantom{-}6$ |
29 | $[29, 29, w - 8]$ | $\phantom{-}6$ |
31 | $[31, 31, -w - 2]$ | $\phantom{-}4$ |
31 | $[31, 31, w - 2]$ | $\phantom{-}4$ |
43 | $[43, 43, w + 11]$ | $\phantom{-}10$ |
43 | $[43, 43, w + 32]$ | $\phantom{-}10$ |
59 | $[59, 59, 2w - 9]$ | $-12$ |
59 | $[59, 59, -2w - 9]$ | $-12$ |
Atkin-Lehner eigenvalues
Norm | Prime | Eigenvalue |
---|---|---|
$2$ | $[2, 2, w + 1]$ | $-1$ |
$5$ | $[5, 5, w]$ | $1$ |