Properties

Label 2.2.140.1-20.1-c
Base field \(\Q(\sqrt{35}) \)
Weight $[2, 2]$
Level norm $20$
Level $[20, 10, 2w]$
Dimension $1$
CM no
Base change yes

Related objects

Downloads

Learn more

Base field \(\Q(\sqrt{35}) \)

Generator \(w\), with minimal polynomial \(x^{2} - 35\); narrow class number \(4\) and class number \(2\).

Form

Weight: $[2, 2]$
Level: $[20, 10, 2w]$
Dimension: $1$
CM: no
Base change: yes
Newspace dimension: $20$

Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $\phantom{-}0$
5 $[5, 5, w]$ $-1$
7 $[7, 7, w]$ $-2$
9 $[9, 3, 3]$ $-2$
13 $[13, 13, w + 3]$ $\phantom{-}2$
13 $[13, 13, w + 10]$ $\phantom{-}2$
17 $[17, 17, w + 1]$ $-6$
17 $[17, 17, w + 16]$ $-6$
19 $[19, 19, w + 4]$ $\phantom{-}4$
19 $[19, 19, -w + 4]$ $\phantom{-}4$
23 $[23, 23, w + 9]$ $-6$
23 $[23, 23, w + 14]$ $-6$
29 $[29, 29, -w - 8]$ $\phantom{-}6$
29 $[29, 29, w - 8]$ $\phantom{-}6$
31 $[31, 31, -w - 2]$ $\phantom{-}4$
31 $[31, 31, w - 2]$ $\phantom{-}4$
43 $[43, 43, w + 11]$ $\phantom{-}10$
43 $[43, 43, w + 32]$ $\phantom{-}10$
59 $[59, 59, 2w - 9]$ $-12$
59 $[59, 59, -2w - 9]$ $-12$
Display number of eigenvalues

Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w + 1]$ $-1$
$5$ $[5, 5, w]$ $1$