# Properties

 Label 2.2.140.1-14.1-c Base field $$\Q(\sqrt{35})$$ Weight $[2, 2]$ Level norm $14$ Level $[14, 14, w - 7]$ Dimension $1$ CM no Base change yes

# Related objects

## Base field $$\Q(\sqrt{35})$$

Generator $$w$$, with minimal polynomial $$x^{2} - 35$$; narrow class number $$4$$ and class number $$2$$.

## Form

 Weight: $[2, 2]$ Level: $[14, 14, w - 7]$ Dimension: $1$ CM: no Base change: yes Newspace dimension: $36$

## Hecke eigenvalues ($q$-expansion)

The Hecke eigenvalue field is $\Q$.
Norm Prime Eigenvalue
2 $[2, 2, w + 1]$ $-1$
5 $[5, 5, w]$ $\phantom{-}0$
7 $[7, 7, w]$ $\phantom{-}1$
9 $[9, 3, 3]$ $-2$
13 $[13, 13, w + 3]$ $\phantom{-}4$
13 $[13, 13, w + 10]$ $\phantom{-}4$
17 $[17, 17, w + 1]$ $-6$
17 $[17, 17, w + 16]$ $-6$
19 $[19, 19, w + 4]$ $-2$
19 $[19, 19, -w + 4]$ $-2$
23 $[23, 23, w + 9]$ $\phantom{-}0$
23 $[23, 23, w + 14]$ $\phantom{-}0$
29 $[29, 29, -w - 8]$ $-6$
29 $[29, 29, w - 8]$ $-6$
31 $[31, 31, -w - 2]$ $\phantom{-}4$
31 $[31, 31, w - 2]$ $\phantom{-}4$
43 $[43, 43, w + 11]$ $\phantom{-}8$
43 $[43, 43, w + 32]$ $\phantom{-}8$
59 $[59, 59, 2w - 9]$ $\phantom{-}6$
59 $[59, 59, -2w - 9]$ $\phantom{-}6$
 Display number of eigenvalues

## Atkin-Lehner eigenvalues

Norm Prime Eigenvalue
$2$ $[2, 2, w + 1]$ $1$
$7$ $[7, 7, w]$ $-1$